Repository logo
 
Publication

IIoT Data Ness: From Streaming to Added Value

datacite.subject.fosInformáticapt_PT
dc.contributor.advisorSousa, Cristóvão Dinis
dc.contributor.advisorCarneiro, Davide Rua
dc.contributor.authorCorreia, Ricardo André Araújo
dc.date.accessioned2023-03-15T15:13:55Z
dc.date.available2023-03-15T15:13:55Z
dc.date.issued2022
dc.date.submitted2022
dc.description.abstractIn the emerging Industry 4.0 paradigm, the internet of things has been an innovation driver, allowing for environment visibility and control through sensor data analysis. However the data is of such volume and velocity that data quality cannot be assured by conventional architectures. It has been argued that the quality and observability of data are key to a project’s success, allowing users to interact with data more effectively and rapidly. In order for a project to become successful in this context, it is of imperative importance to incorporate data quality mechanisms in order to extract the most value out of data. If this goal is achieved one can expect enormous advantages that could lead to financial and innovation gains for the industry. To cope with this reality, this work presents a data mesh oriented methodology based on the state-of-the-art data management tools that exist to design a solution which leverages data quality in the Industrial Internet of Things (IIoT) space, through data contextualization. In order to achieve this goal, practices such as FAIR data principles and data observability concepts were incorporated into the solution. The result of this work allowed for the creation of an architecture that focuses on data and metadata management to elevate data context, ownership and quality.pt_PT
dc.description.abstractO conceito de Internet of Things (IoT) é um dos principais fatores de sucesso para a nova Indústria 4.0. Através de análise de dados sobre os valores que os sensores coletam no seu ambiente, é possível a construção uma plataforma capaz de identificar condições de sucesso e eventuais problemas antes que estes ocorram, resultando em ganho monetário relevante para as empresas. No entanto, este caso de uso não é de fácil implementação, devido à elevada quantidade e velocidade de dados proveniente de um ambiente de IIoT (Industrial Internet of Things).pt_PT
dc.identifier.tid203173015pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/22521
dc.language.isoengpt_PT
dc.subjectObservabilidade de dadospt_PT
dc.subjectQualidade de dadospt_PT
dc.subjectFAIR datapt_PT
dc.subjectData Meshpt_PT
dc.subjectData Fabricpt_PT
dc.subjectIIoTpt_PT
dc.titleIIoT Data Ness: From Streaming to Added Valuept_PT
dc.typemaster thesis
dspace.entity.typePublication
rcaap.rightsopenAccesspt_PT
rcaap.typemasterThesispt_PT
thesis.degree.nameMestrado em Engenharia Informáticapt_PT

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
DM_RicardoCorreia_MEI_2022.pdf
Size:
3.58 MB
Format:
Adobe Portable Document Format
Description:
DM_RicardoCorreia_MEI_2022
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: