Repository logo
 
Publication

Deteção de patologia cardíaca usando machine learning

dc.contributor.advisorGomes, Elsa Maria de Carvalho Ferreira
dc.contributor.authorSantos, Jessica Feliz dos
dc.date.accessioned2023-01-20T11:03:42Z
dc.date.available2023-01-20T11:03:42Z
dc.date.issued2022
dc.description.abstractSegundo a Organização Mundial da Saúde, as doenças cardiovasculares (DCV) representam 32% do número de mortes no mundo. A redução deste valor pode ser atingida através da deteção precoce que pode levar a um tratamento mais preciso, melhorando a expectativa de vida do paciente. A ausculta cardíaca é a principal técnica utilizada pelos profissionais de saúde para identificar muitas DCV. No entanto, a auscultação dos sons cardíacos é um procedimento difícil, já que muitos sons são fracos e difíceis de detetar, sendo necessário um processo de treino contínuo. Os estetoscópios modernos podem amplificar os sons cardíacos, reduzir o ruído de ambiente, melhorar a percepção do usuário e, mais importante, converter um sinal acústico em digital. Isto permitiu o desenvolvimento de sistemas de decisão assistidos por computador baseados na auscultação. Este documento apresenta uma metodologia que pode detectar automaticamente a existência de DCV através de sons cardíacos obtidos de diferentes partes do coração. Diversas tecnologias foram analisadas, assim como projetos que tentam resolver parte do problema em questão e a partir deles, três alternativas diferentes foram elaboradas e documentadas, assim como a divisão do dataset e métricas a serem usadas nos testes. Essas alternativas visam classificar anomalias na auscultação cardíaca dos pacientes. Vários modelos das duas primeiras alternativas foram implementados e seus resultados apresentados. Também é feita uma comparação entre as experiências desenvolvidas entre si, também com experiências básicas que não utilizam mecanismos inteligentes e com outros trabalhos que tenham o mesmo objetivo. O melhor resultado obtido foi pela primeira abordagem com uma exatidão de 94%, precisão de 81% e recall de 67%.pt_PT
dc.description.abstractAccording to World Health Organization, the cardiovascular diseases (CVD) represent 32% of the number of deaths worldwide. Early detection leads to a more accurate treatment plan and improves the patient’s life expectancy. Cardiac auscultation is the main technique used by health professionals to identify many CVD. Nevertheless, heart sound auscultation is a difficult procedure, since it requires continuous training and many heart sounds are faint and hard to detect. However, modern stethoscopes can amplify heart sounds, reduce the environment noise, improve the user’s perception and, more importantly, convert an acoustic signal to a digital one. This allowed, the development of computer assisted decision systems based on auscultation. This document presents a methodology that can automatically detect the existence of CVD through cardiac sounds obtained from different parts of the heart. Several technologies were analysed, as well as projects that try to solve part of the problem in question and from them, three different alternatives were elaborated and documented, as well as the division of test data and the metrics for their evaluation. These alternatives are intended to classify anomalies in patients' cardiac auscultation. Several models of the first two alternatives were implemented and their results presented. A comparison is also made between the experiences developed among themselves, also with basic experiments that do not use intelligent mechanisms and with other works that have the same objective. The best result obtained was by the first approach with an accuracy of 94%, precision of 81% and recall of 67%.pt_PT
dc.identifier.tid203112962pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/21718
dc.language.isoengpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectDoenças cardiovascularespt_PT
dc.subjectCuidados de saúdept_PT
dc.subjectAuscultação cardíacapt_PT
dc.subjectRedes neuronaispt_PT
dc.subjectClassificaçãopt_PT
dc.subjectAprendizagem profundapt_PT
dc.subjectCardiovascular diseasespt_PT
dc.subjectHealthcarept_PT
dc.subjectHeart auscultatiopt_PT
dc.subjectNeural networkspt_PT
dc.subjectClassificationpt_PT
dc.subjectDeep learningpt_PT
dc.titleDeteção de patologia cardíaca usando machine learningpt_PT
dc.typemaster thesis
dspace.entity.typePublication
rcaap.rightsopenAccesspt_PT
rcaap.typemasterThesispt_PT
thesis.degree.nameMestrado em Engenharia Informática - Sistemas de Informação e Conhecimentopt_PT

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
DM_JssicaSantos_2022_MEI.pdf
Size:
5.76 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: