Repository logo
 
Publication

Impact of Forecasting Models Errors in a Peer-to-Peer Energy Sharing Market

dc.contributor.authorGomes, Luis
dc.contributor.authorMorais, Hugo
dc.contributor.authorGoncalves, Calvin
dc.contributor.authorGomes, Eduardo
dc.contributor.authorPereira, Lucas
dc.contributor.authorVale, Zita
dc.date.accessioned2023-02-01T12:38:54Z
dc.date.available2023-02-01T12:38:54Z
dc.date.issued2022
dc.description.abstractThe use of energy sharing models in smart grids has been widely addressed in the literature. However, feasible technical solutions that can deploy these models into reality, as well as the correct use of energy forecasts are not properly addressed. This paper proposes a simple, yet viable and feasible, solution to deploy energy management systems on the end-user-side in order to enable not only energy forecasting but also a distributed discriminatory-price auction peer-to-peer energy transaction market. This work also analyses the impact of four energy forecasting models on energy transactions: a mathematical model, a support-vector machine model, an eXtreme Gradient Boosting model, and a TabNet model. To test the proposed solution and models, the system was deployed in five small offices and three residential households, achieving a maximum of energy costs reduction of 10.89% within the community, ranging from 0.24% to 57.43% for each individual agent. The results demonstrated the potential of peer-to-peer energy transactions to promote energy cost reductions and enable the validation of auction-based energy transactions and the use of energy forecasting models in today’s buildings and end-users.pt_PT
dc.description.sponsorshipThis article is a result of the project RETINA (NORTE-01-0145-FEDER-000062), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), and by Portuguese Foundation for Science and Technology (FCT) under grants 2021.07754.BD and CEECIND/01179/2017.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.3390/en15103543pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/22063
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPIpt_PT
dc.relationNORTE-01-0145-FEDER-000062pt_PT
dc.relationMARLEC: Multi-Agent Reinforcement Learning Applications in Energy Communities
dc.relationNot Available
dc.relation.publisherversionhttps://www.mdpi.com/1996-1073/15/10/3543pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectEnergy auctionspt_PT
dc.subjectEnergy forecastpt_PT
dc.subjectEnergy management systemspt_PT
dc.subjectEnergy sharingpt_PT
dc.subjectPeer-topeer energy transactionspt_PT
dc.titleImpact of Forecasting Models Errors in a Peer-to-Peer Energy Sharing Marketpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleMARLEC: Multi-Agent Reinforcement Learning Applications in Energy Communities
oaire.awardTitleNot Available
oaire.awardURIinfo:eu-repo/grantAgreement/FCT//2021.07754.BD/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/CEEC IND 2017/CEECIND%2F01179%2F2017%2FCP1461%2FCT0020/PT
oaire.citation.issue10pt_PT
oaire.citation.startPage3543pt_PT
oaire.citation.titleEnergiespt_PT
oaire.citation.volume15pt_PT
oaire.fundingStreamCEEC IND 2017
person.familyNameMorais
person.familyNameGoncalves
person.familyNameVale
person.givenNameHugo
person.givenNameCalvin
person.givenNameZita
person.identifier80878
person.identifier632184
person.identifier.ciencia-id6F19-CB63-C8A8
person.identifier.ciencia-id2010-D878-271B
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0002-8597-3383
person.identifier.orcid0000-0001-5906-4744
person.identifier.orcid0000-0003-2214-3814
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id21834170800
person.identifier.scopus-author-id7004115775
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationeaac2304-a007-4531-8398-ee9f426c2f52
relation.isAuthorOfPublicationb159f8c9-5ee1-444e-b890-81242ee0738e
relation.isAuthorOfPublicationbe8a5baf-e833-4804-bf53-5367df80212c
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscoveryeaac2304-a007-4531-8398-ee9f426c2f52
relation.isProjectOfPublication9f4abbd3-0106-4b0e-8563-c0f3e432127c
relation.isProjectOfPublicationa26cb5d5-fee0-4b11-9ec8-bcbe59d75ce7
relation.isProjectOfPublication.latestForDiscovery9f4abbd3-0106-4b0e-8563-c0f3e432127c

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART16_GECAD_ZAV_2022.pdf
Size:
2.52 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: