Repository logo
 
Publication

Leverage variational graph representation for model poisoning on federated learning

dc.contributor.authorLi, Kai
dc.contributor.authorYuan, Xin
dc.contributor.authorZheng, Jingjing
dc.contributor.authorNi, Wei
dc.contributor.authorDressler, Falko
dc.contributor.authorJamalipour, Abbas
dc.date.accessioned2024-06-05T13:45:53Z
dc.date.available2024-06-05T13:45:53Z
dc.date.issued2024
dc.description.abstractThis article puts forth a new training data-untethered model poisoning (MP) attack on federated learning (FL). The new MP attack extends an adversarial variational graph autoencoder (VGAE) to create malicious local models based solely on the benign local models overheard without any access to the training data of FL. Such an advancement leads to the VGAE-MP attack that is not only efficacious but also remains elusive to detection. VGAE-MP attack extracts graph structural correlations among the benign local models and the training data features, adversarially regenerates the graph structure, and generates malicious local models using the adversarial graph structure and benign models’ features. Moreover, a new attacking algorithm is presented to train the malicious local models using VGAE and sub-gradient descent, while enabling an optimal selection of the benign local models for training the VGAE. Experiments demonstrate a gradual drop in FL accuracy under the proposed VGAE-MP attack and the ineffectiveness of existing defense mechanisms in detecting the attack, posing a severe threat to FL.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationLi, Kai & Yuan, Xin & Zheng, Jingjing & Ni, Wei & Dressler, Falko & Jamalipour, Abbas. (2024). Leverage Variational Graph Representation for Model Poisoning on Federated Learning. IEEE transactions on neural networks and learning systems. PP. 10.1109/TNNLS.2024.3394252.pt_PT
dc.identifier.doihttps://doi.org/10.1109/TNNLS.2024.3394252pt_PT
dc.identifier.issn2162-237X
dc.identifier.issn2162-2388
dc.identifier.urihttp://hdl.handle.net/10400.22/25620
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherIEEEpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectFederated learningpt_PT
dc.subjectVariational graph autoencoderspt_PT
dc.subjectData-untethered modelpt_PT
dc.subjectPoisoningpt_PT
dc.titleLeverage variational graph representation for model poisoning on federated learningpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.titleIEEE Transactions on Neural Networks and Learning Systemspt_PT
person.familyNameLi
person.givenNameKai
person.identifier.ciencia-idEE10-B822-16ED
person.identifier.orcid0000-0002-0517-2392
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication21f3fb85-19c2-4c89-afcd-3acb27cedc5e
relation.isAuthorOfPublication.latestForDiscovery21f3fb85-19c2-4c89-afcd-3acb27cedc5e

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
CISTER-TR-240507.pdf
Size:
1.44 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: