Name: | Description: | Size: | Format: | |
---|---|---|---|---|
11.39 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
O aumento da preocupação da população com as questões ambientais tem impulsionado a produção
de energia através de fontes de energia renováveis, com principal destaque para a produção
por via de painéis fotovoltaicos. A potência extraída de um painel tem relação direta com a
temperatura e com a irradiância solar, rápidas variações nestas condições alteram o Maximum
Power Point (MPP). Com a implementação das técnicas Maximum Power Point Tracking (MPPT),
o controlador ajusta‐se continuamente a estas mudanças visando garantir a melhor extração de
potência possível. No caso de o painel estar sob condições Partial Shading Condition (PSC) o rastreamento
do MPP torna‐se mais desafiador, devido à existência de Local Maximum Power Point
(LMPP), o que exige técnicas mais complexas.
Na presente dissertação, são abordados os conceitos teóricos que fundamentam o funcionamento
dos painéis fotovoltaicos, designados na literatura inglesa como Photovoltaic (PV). As
técnicas MPPT são classificadas em quatro categorias: clássicas, inteligentes, baseadas em otimização
e híbridas. As clássicas são as mais simples e económicas, apresentam eficiência limitada
em condições de rápidas mudanças ambientais e sob condições de PSC. As técnicas inteligentes
destacam‐se pela alta adaptabilidade e pela capacidade de rastreamento em PSC, contudo apresentam
uma elevada complexidade de controlo. As técnicas de otimização, baseadas no comportamento
animal, conseguem identificar de forma muito precisa o Global Maximum Power
Point (GMPP) sob PSC. Por fim, as técnicas híbridas representam uma evolução, ao combinarem
diferentes técnicas, com o objetivo de aumentar a eficiência do sistema.
No seguimento do estudo das principais técnicas MPPT, é realizada uma análise comparativa,
em meio de simulação, de três destas. As duas primeiras são baseadas no método tradicional
Perturb and Observe (P&O), distinguindo‐se pela forma como é aplicada a perturbação. Uma
atua diretamente no duty cycle do conversor CC/CC Buck utilizado, a outra abordagem altera
a tensão de referência sendo o controlador Proporcional Integral (PI) responsável por ajustar o
sistema para responder a esta alteração. A terceira técnica é baseada no Gorilla Troops Optimizer
(GTO), um método de otimização recente que, no âmbito do MPPT, opera com maior capacidade
de resposta em condições de PSC. Devido à não utilização de um modelo matemático para avaliar
o impacto de cada indivíduo, o tempo de convergência do GTO aumentou. A nível prático, foram
implementadas as duas técnicas baseadas no P&O, com e sem o controlador PI, sendo ambas
comparadas com um sistema sem qualquer tipo de técnica MPPT. Os resultados evidenciaram
uma clara vantagem na utilização destas técnicas, derivado ao aumento da potência extraída.
Observou‐se, ainda, uma maior estabilidade de operação e um ligeiro incremento da potência
extraída na abordagem que utiliza o controlador PI, comportamento esperado face aos resultados
obtido em simulação.
The population’s increasing concern about environmental issues has increased the production of energy through renewable energy sources, with a particular emphasis on production via photovoltaic panels. The power extracted from a panel is directly related to the temperature and solar irradiance; brisk variations in these conditions alter the MPP. Through the implementation of MPPT techniques, the controller adjusts continuously to these changes in order to ensure the best possible power extraction. In the case that the panel is under PSC conditions, tracking the MPP becomes more challenging due to the existence of LMPP, which requires techniques of higher complexity. In this dissertation the theoretical concepts that underlie the operation of photovoltaic panels will be addressed, referred to in the English literature as PV. Techniques designated as MPPT are classified into four categories: classical, intelligent, optimization‐based and hybrid. The classic techniques are the simplest and most economical, they display limited efÏciency in rapidly changing environmental conditions and under PSC conditions. The intelligent techniques stand out for their high adaptability and their tracking capacity in PSC, however they present a high level of control complexity. The optimization techniques, based on animal behavior, can identify GMPP very accurately under PSC. Lastly, hybrid techniques represent an evolution, by combining different techniques, with the aim of increasing the system’s efÏciency. As a follow‐up to the study of the main MPPT techniques, a comparative analysis is carried out recurring to the simulation of three of them. The first two are based on the traditional P&O method, distinguished by the way in which the disturbance is applied. One acts directly on the duty cycle of the DC/DC Buck converter used, the other approach changes the reference voltage while the PI controller is responsible for adjusting the system to respond to this alteration. The third technique is based on GTO, a recent optimization method that within the scope of MPPT operates with greater responsiveness under PSC conditions. Due to the lack of use of a mathematical model to evaluate the impact of each individual, the GTO convergence time increased. At a practical level, the two techniques based on P&O were implemented, with and without the PI controller, and both were compared with a system without any type of MPPT technique. The results exhibit a clear advantage in using these techniques, derived from the increase in the extracted power. A greater operational stability and a slight increase in extracted power were also observed in the approach that implemented the PI controller, an expected behavior based on the results obtained in simulation.
The population’s increasing concern about environmental issues has increased the production of energy through renewable energy sources, with a particular emphasis on production via photovoltaic panels. The power extracted from a panel is directly related to the temperature and solar irradiance; brisk variations in these conditions alter the MPP. Through the implementation of MPPT techniques, the controller adjusts continuously to these changes in order to ensure the best possible power extraction. In the case that the panel is under PSC conditions, tracking the MPP becomes more challenging due to the existence of LMPP, which requires techniques of higher complexity. In this dissertation the theoretical concepts that underlie the operation of photovoltaic panels will be addressed, referred to in the English literature as PV. Techniques designated as MPPT are classified into four categories: classical, intelligent, optimization‐based and hybrid. The classic techniques are the simplest and most economical, they display limited efÏciency in rapidly changing environmental conditions and under PSC conditions. The intelligent techniques stand out for their high adaptability and their tracking capacity in PSC, however they present a high level of control complexity. The optimization techniques, based on animal behavior, can identify GMPP very accurately under PSC. Lastly, hybrid techniques represent an evolution, by combining different techniques, with the aim of increasing the system’s efÏciency. As a follow‐up to the study of the main MPPT techniques, a comparative analysis is carried out recurring to the simulation of three of them. The first two are based on the traditional P&O method, distinguished by the way in which the disturbance is applied. One acts directly on the duty cycle of the DC/DC Buck converter used, the other approach changes the reference voltage while the PI controller is responsible for adjusting the system to respond to this alteration. The third technique is based on GTO, a recent optimization method that within the scope of MPPT operates with greater responsiveness under PSC conditions. Due to the lack of use of a mathematical model to evaluate the impact of each individual, the GTO convergence time increased. At a practical level, the two techniques based on P&O were implemented, with and without the PI controller, and both were compared with a system without any type of MPPT technique. The results exhibit a clear advantage in using these techniques, derived from the increase in the extracted power. A greater operational stability and a slight increase in extracted power were also observed in the approach that implemented the PI controller, an expected behavior based on the results obtained in simulation.
Description
Keywords
Gorilla Troops Optimizer (GTO) Painéis Fotovoltaicos Perturb and Observe (P&O) Técnicas MPPT Painéis fotovoltaicos Técnicas MPPT
Pedagogical Context
Citation
Publisher
CC License
Without CC licence