Repository logo
 
Publication

An Evolutionary Perspective of Virus Propagation

dc.contributor.authorMachado, J. A. Tenreiro
dc.date.accessioned2022-01-13T10:38:12Z
dc.date.available2022-01-13T10:38:12Z
dc.date.issued2020
dc.description.abstractThis paper presents an evolutionary algorithm that simulates simplified scenarios of the diffusion of an infectious disease within a given population. The proposed evolutionary epidemic diffusion (EED) computational model has a limited number of variables and parameters, but is still able to simulate a variety of configurations that have a good adherence to real-world cases. The use of two space distances and the calculation of spatial 2-dimensional entropy are also examined. Several simulations demonstrate the feasibility of the EED for testing distinct social, logistic and economy risks. The performance of the system dynamics is assessed by several variables and indices. The global information is efficiently condensed and visualized by means of multidimensional scaling.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.3390/math8050779pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/19441
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPIpt_PT
dc.relation.publisherversionhttps://www.mdpi.com/2227-7390/8/5/779/htmpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectEvolutionary algorithmpt_PT
dc.subjectEpidemicpt_PT
dc.subjectEntropypt_PT
dc.subjectMultidimensional scalingpt_PT
dc.subjectDistancespt_PT
dc.titleAn Evolutionary Perspective of Virus Propagationpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.issue5pt_PT
oaire.citation.startPage779pt_PT
oaire.citation.titleMathematicspt_PT
oaire.citation.volume8pt_PT
person.familyNameTenreiro Machado
person.givenNameJ. A.
person.identifier.ciencia-id7A18-4935-5B29
person.identifier.orcid0000-0003-4274-4879
person.identifier.ridM-2173-2013
person.identifier.scopus-author-id55989030100
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication82cd5c17-07b6-492b-b3e3-ecebdad1254f
relation.isAuthorOfPublication.latestForDiscovery82cd5c17-07b6-492b-b3e3-ecebdad1254f

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART_DEE_JTM_mathematics_2020.pdf
Size:
1.59 MB
Format:
Adobe Portable Document Format