| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 4.65 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
Com a evolução do mundo tecnológico, a crescente procura por sistemas mais complexos e mais eficientes tem impulsionado avanços na eletrónica de potência. É neste contexto, que, surgem os semicondutores de banda proibida ou também conhecidos por semicondutores wide bandgap (WBGs), nomeadamente os Carboneto de Silício (SiC) e o Nitreto de Gálio (GaN) que surgem como materiais revolucionários. Estes semicondutores oferecem características superiores aos tradicionais semicondutores de Silício (Si), incluindo, uma banda proibida ou forbidden gap superior, tensões de rotura elevadas e melhor condutividade térmica, tornando-os ideias para aplicações de potências e frequências elevadas. Esta dissertação tem como principal objetivo explorar as propriedades únicas destes comutadores, e o seu potencial para superar os dispositivos tradicionais de Si. É realizada uma análise comparativa, com foco no desempenho do SiC e do GaN em aplicações especificas, como
conversores de potência, veículos elétricos e sistemas de energia renovável. Através da simulação de conversores de potência otimizados para componentes WBG, este estudo procura evidenciar o impacto destes materiais na eletrónica de potência.
With the continuous evolution of technology, the growing demand for more complex and efficient systems has driven significant advances in power electronics. In this context, wide bandgap (WBG) semiconductors such as Silicon Carbide (SiC) and Gallium Nitride (GaN) have emerged as revolutionary materials. These semiconductors offer superior characteristics compared to traditional Silicon (Si) devices, including a wider bandgap, higher breakdown voltages, and better thermal conductivity, making them ideal for high-power and high-frequency applications. The main objective of this dissertation is to explore the unique properties of these switches and their potential to surpass conventional Si-based devices. A comparative analysis is carried out, focusing on the performance of SiC and GaN in specific applications such as power converters, electric vehicles, and renewable energy systems. Through the simulation of power converters optimized for WBG components, this study aims to highlight the impact of these materials on the field of power electronics.
With the continuous evolution of technology, the growing demand for more complex and efficient systems has driven significant advances in power electronics. In this context, wide bandgap (WBG) semiconductors such as Silicon Carbide (SiC) and Gallium Nitride (GaN) have emerged as revolutionary materials. These semiconductors offer superior characteristics compared to traditional Silicon (Si) devices, including a wider bandgap, higher breakdown voltages, and better thermal conductivity, making them ideal for high-power and high-frequency applications. The main objective of this dissertation is to explore the unique properties of these switches and their potential to surpass conventional Si-based devices. A comparative analysis is carried out, focusing on the performance of SiC and GaN in specific applications such as power converters, electric vehicles, and renewable energy systems. Through the simulation of power converters optimized for WBG components, this study aims to highlight the impact of these materials on the field of power electronics.
Description
Keywords
Carbeto de Silício (SiC) Conversores de potência Nitreto de Gálio (GaN) Silício (Si) Semicondutores wide bandgap Silicon Carbide (SiC) Power Converters Gallium Nitride (GaN) Silicon (Si) Wide Bandgap Semiconductors
Pedagogical Context
Citation
Publisher
CC License
Without CC licence
