Publication
Preliminary results of advanced heuristic optimization in the risk-based energy scheduling competition
dc.contributor.author | Almeida, José | |
dc.contributor.author | Lezama, Fernando | |
dc.contributor.author | Soares, João | |
dc.contributor.author | Vale, Zita | |
dc.contributor.author | Canizes, Bruno | |
dc.date.accessioned | 2023-03-14T09:28:38Z | |
dc.date.available | 2023-03-14T09:28:38Z | |
dc.date.issued | 2022 | |
dc.description.abstract | In this paper, multiple evolutionary algorithms are applied to solve an energy resource management problem in the day-ahead context involving a risk-based analysis corresponding to the proposed 2022 competition on evolutionary computation. We test numerous evolutionary algorithms for a risk-averse day-ahead operation to show preliminary results for the competition. We use evolutionary computation to follow the competition guidelines. Results show that the HyDE algorithm obtains a better solution with lesser costs when compared to the other tested algorithm due to the minimization of worst-scenario impact. | pt_PT |
dc.description.sponsorship | This research has received funding from FEDER funds through the Operational Programme for Competitiveness and Internationaliza- tion (COMPETE 2020), under Project POCI-01-0145-FEDER-028983; by National Funds through the FCT Portuguese Foundation for Science and Technology, under Projects PTDC/EEI-EEE/28983/2017 (CENERGETIC), CEECIND/02814/2017, UIDB/000760/2020, and UIDP/00760/2020 | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.doi | 10.1145/3520304.3535080 | pt_PT |
dc.identifier.isbn | 978-1-4503-9268-6 | |
dc.identifier.uri | http://hdl.handle.net/10400.22/22463 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | ACM | pt_PT |
dc.relation | POCI-01-0145-FEDER-028983 | pt_PT |
dc.relation | Not Available | |
dc.relation | Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development | |
dc.relation.publisherversion | https://dl.acm.org/doi/10.1145/3520304.3535080 | pt_PT |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | pt_PT |
dc.subject | Computing methodologies | pt_PT |
dc.subject | Search methodologies | pt_PT |
dc.subject | Applied computing | pt_PT |
dc.subject | Engineering | pt_PT |
dc.title | Preliminary results of advanced heuristic optimization in the risk-based energy scheduling competition | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardTitle | Not Available | |
oaire.awardTitle | Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/9471 - RIDTI/PTDC%2FEEI-EEE%2F28983%2F2017/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/CEEC IND 2017/CEECIND%2F02814%2F2017%2FCP1417%2FCT0002/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F00760%2F2020/PT | |
oaire.citation.conferencePlace | Boston Massachusetts | pt_PT |
oaire.citation.endPage | 1816 | pt_PT |
oaire.citation.startPage | 1812 | pt_PT |
oaire.citation.title | GECCO '22: Proceedings of the Genetic and Evolutionary Computation Conference Companion | pt_PT |
oaire.fundingStream | 9471 - RIDTI | |
oaire.fundingStream | CEEC IND 2017 | |
oaire.fundingStream | 6817 - DCRRNI ID | |
person.familyName | Almeida | |
person.familyName | Lezama | |
person.familyName | Soares | |
person.familyName | Vale | |
person.familyName | Canizes | |
person.givenName | José | |
person.givenName | Fernando | |
person.givenName | João | |
person.givenName | Zita | |
person.givenName | Bruno | |
person.identifier | 1043580 | |
person.identifier | 632184 | |
person.identifier.ciencia-id | C017-775D-9F55 | |
person.identifier.ciencia-id | E31F-56D6-1E0F | |
person.identifier.ciencia-id | 1612-8EA8-D0E8 | |
person.identifier.ciencia-id | 721B-B0EB-7141 | |
person.identifier.ciencia-id | A411-F561-E922 | |
person.identifier.orcid | 0000-0002-9504-0501 | |
person.identifier.orcid | 0000-0001-8638-8373 | |
person.identifier.orcid | 0000-0002-4172-4502 | |
person.identifier.orcid | 0000-0002-4560-9544 | |
person.identifier.orcid | 0000-0002-9808-5537 | |
person.identifier.rid | A-6945-2017 | |
person.identifier.rid | A-5824-2012 | |
person.identifier.rid | I-3492-2017 | |
person.identifier.scopus-author-id | 36810077500 | |
person.identifier.scopus-author-id | 35436109600 | |
person.identifier.scopus-author-id | 7004115775 | |
person.identifier.scopus-author-id | 35408699300 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | 119ecfd0-1484-4157-911c-7632f2fc56c0 | |
relation.isAuthorOfPublication | 6a55317b-92c2-404f-8542-c7a73061cc9b | |
relation.isAuthorOfPublication | 9ece308b-6d79-4cec-af91-f2278dcc47eb | |
relation.isAuthorOfPublication | ff1df02d-0c0f-4db1-bf7d-78863a99420b | |
relation.isAuthorOfPublication | 7ea215ea-79d5-42be-a870-a0c8b23cf556 | |
relation.isAuthorOfPublication.latestForDiscovery | 6a55317b-92c2-404f-8542-c7a73061cc9b | |
relation.isProjectOfPublication | 6615f0c1-4abc-48fc-ac0a-fce560b02403 | |
relation.isProjectOfPublication | 7f9ebad6-9f7d-4225-8694-48de17ea8b51 | |
relation.isProjectOfPublication | 6eb94c83-adf9-4d9d-a75c-be95f44e3ca5 | |
relation.isProjectOfPublication.latestForDiscovery | 6eb94c83-adf9-4d9d-a75c-be95f44e3ca5 |