Repository logo
 
Publication

Using an Artificial Neural Network Approach to Predict Machining Time

dc.contributor.authorRodrigues, André
dc.contributor.authorSilva, Francisco
dc.contributor.authorSousa, Vitor F. C.
dc.contributor.authorPinto, Arnaldo
dc.contributor.authorPinto Ferreira, Luís
dc.contributor.authorPereira, Maria Teresa Ribeiro
dc.date.accessioned2023-01-18T16:44:42Z
dc.date.available2023-01-18T16:44:42Z
dc.date.issued2022-10-12
dc.description.abstractOne of the most critical factors in producing plastic injection molds is the cost estimation of machining services, which significantly affects the final mold price. These services’ costs are determined according to the machining time, which is usually a long and expensive operation. If it is considered that the injection mold parts are all different, it can be understood that the correct and quick estimation of machining times is of great importance for a company’s success. This article presents a proposal to apply artificial neural networks in machining time estimation for standard injection mold parts. For this purpose, a large set of parts was considered to shape the artificial intelligence model, and machining times were calculated to collect enough data for training the neural networks. The influences of the network architecture, input data, and the variables used in the network’s training were studied to find the neural network with greatest prediction accuracy. The application of neural networks in this work proved to be a quick and efficient way to predict cutting times with a percent error of 2.52% in the best case. The present work can strongly contribute to the research in this and similar sectors, as recent research does not usually focus on the direct prediction of machining times relating to overall production cost. This tool can be used in a quick and efficient manner to obtain information on the total machining cost of mold parts, with the possibility of being applied to other industry sectorspt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.3390/met12101709pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/21659
dc.language.isoengpt_PT
dc.publisherMDPIpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectMachiningpt_PT
dc.subjectMachining timespt_PT
dc.subjectMachining time predictionpt_PT
dc.subjectCost estimationpt_PT
dc.subjectArtificial intelligencept_PT
dc.subjectArtificial neural networkspt_PT
dc.titleUsing an Artificial Neural Network Approach to Predict Machining Timept_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.issue10pt_PT
oaire.citation.startPage1709pt_PT
oaire.citation.titleMetalspt_PT
oaire.citation.volume12pt_PT
person.familyNameSilva
person.familyNameSousa
person.familyNamePinto
person.familyNamePinto Ferreira
person.familyNameRibeiro Pereira
person.givenNameFrancisco
person.givenNameVitor
person.givenNameArnaldo
person.givenNameLuís
person.givenNameMaria Teresa
person.identifier1422904
person.identifier2245862
person.identifierU-2265-2018
person.identifier.ciencia-idB81C-4758-2D59
person.identifier.ciencia-id6917-4643-1AA4
person.identifier.ciencia-id1317-0CD1-8505
person.identifier.ciencia-id5415-323A-131B
person.identifier.ciencia-id7A16-77DE-410A
person.identifier.orcid0000-0001-8570-4362
person.identifier.orcid0000-0001-8230-7310
person.identifier.orcid0000-0003-0074-7799
person.identifier.orcid0000-0003-4225-6525
person.identifier.orcid0000-0003-4556-9578
person.identifier.ridI-5708-2015
person.identifier.ridAEO-3561-2022
person.identifier.scopus-author-id56870827300
person.identifier.scopus-author-id57214461815
person.identifier.scopus-author-id24341119600
person.identifier.scopus-author-id57188755263
person.identifier.scopus-author-id56624034400
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationd050c135-4d9d-4fb2-97d1-cac97be3f6b9
relation.isAuthorOfPublication1f5c45a2-d9f3-4e13-96ca-80f74b4e0d8c
relation.isAuthorOfPublication3bbea7f4-bf70-4563-b10d-de3043681590
relation.isAuthorOfPublication94c4999f-64f8-4259-b1ab-0eac1679241e
relation.isAuthorOfPublication3f7f1146-378f-4f1d-80ba-d499f3bd114b
relation.isAuthorOfPublication.latestForDiscovery3f7f1146-378f-4f1d-80ba-d499f3bd114b

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART25_DEM_FGS_2022.pdf
Size:
2.68 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: