Publication
Hour-ahead energy resource scheduling optimization for smart power distribution networks considering local energy market
dc.contributor.author | Canizes, Bruno | |
dc.contributor.author | Soares, João | |
dc.contributor.author | Almeida, José | |
dc.contributor.author | Vale, Zita | |
dc.date.accessioned | 2022-12-21T11:37:29Z | |
dc.date.available | 2022-12-21T11:37:29Z | |
dc.date.issued | 2022 | |
dc.description.abstract | Energy resource management is a concept that should be considered in energy systems due to the significant penetration of dispersed energy resources. Thus, the efficiency in the electrical network operation can be improved and the end-user costs reduced. In this way, an energy resource aggregator plays an important role in managing the demand and generation flexibility which is meant for small producers under market-oriented environments. This research paper presents an energy resource management in intraday (hour-ahead) time horizon considering local market transactions between players. The optimization model is formulated as mixed-integer linear programming and solved in a deterministic way. To exemplify the implementation of the proposed model, a realistic medium voltage distribution network with 180 buses, high penetration of distributed energy resources, energy storage systems, and electric vehicle charging stations is considered. The results show the impact of the forecast errors as well as the contractual constraints between the aggregator and energy storage systems and electric vehicle charging stations in the intraday scheduling costs. | pt_PT |
dc.description.sponsorship | This research has received funding from FEDER funds through the Operational Programme for Competitiveness and Internationalization (COMPETE 2020) and National Funds through the FCT Portuguese Foundation for Science and Technology, under Projects PTDC/EEI-EEE/28983/2017 (CENERGETIC), CEECIND/02814/2017 (Joao Soares grant), and UIDB/000760/2020. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.doi | 10.1016/j.egyr.2022.02.253 | pt_PT |
dc.identifier.uri | http://hdl.handle.net/10400.22/21225 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | Elsevier | pt_PT |
dc.relation | Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development | |
dc.relation | Not Available | |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S2352484722005005 | pt_PT |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | pt_PT |
dc.subject | Aggregator | pt_PT |
dc.subject | Electric vehicles | pt_PT |
dc.subject | Energy resources management | pt_PT |
dc.subject | Local energy market | pt_PT |
dc.subject | Hour-ahead | pt_PT |
dc.subject | Smart distribution network | pt_PT |
dc.title | Hour-ahead energy resource scheduling optimization for smart power distribution networks considering local energy market | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardTitle | Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development | |
oaire.awardTitle | Not Available | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/9471 - RIDTI/PTDC%2FEEI-EEE%2F28983%2F2017/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00760%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/CEEC IND 2017/CEECIND%2F02814%2F2017%2FCP1417%2FCT0002/PT | |
oaire.citation.endPage | 582 | pt_PT |
oaire.citation.startPage | 575 | pt_PT |
oaire.citation.title | Energy Reports | pt_PT |
oaire.citation.volume | 8 | pt_PT |
oaire.fundingStream | 9471 - RIDTI | |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | CEEC IND 2017 | |
person.familyName | Canizes | |
person.familyName | Soares | |
person.familyName | Almeida | |
person.familyName | Vale | |
person.givenName | Bruno | |
person.givenName | João | |
person.givenName | José | |
person.givenName | Zita | |
person.identifier | 1043580 | |
person.identifier | 632184 | |
person.identifier.ciencia-id | A411-F561-E922 | |
person.identifier.ciencia-id | 1612-8EA8-D0E8 | |
person.identifier.ciencia-id | C017-775D-9F55 | |
person.identifier.ciencia-id | 721B-B0EB-7141 | |
person.identifier.orcid | 0000-0002-9808-5537 | |
person.identifier.orcid | 0000-0002-4172-4502 | |
person.identifier.orcid | 0000-0002-9504-0501 | |
person.identifier.orcid | 0000-0002-4560-9544 | |
person.identifier.rid | I-3492-2017 | |
person.identifier.rid | A-5824-2012 | |
person.identifier.scopus-author-id | 35408699300 | |
person.identifier.scopus-author-id | 35436109600 | |
person.identifier.scopus-author-id | 7004115775 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | 7ea215ea-79d5-42be-a870-a0c8b23cf556 | |
relation.isAuthorOfPublication | 9ece308b-6d79-4cec-af91-f2278dcc47eb | |
relation.isAuthorOfPublication | 119ecfd0-1484-4157-911c-7632f2fc56c0 | |
relation.isAuthorOfPublication | ff1df02d-0c0f-4db1-bf7d-78863a99420b | |
relation.isAuthorOfPublication.latestForDiscovery | 7ea215ea-79d5-42be-a870-a0c8b23cf556 | |
relation.isProjectOfPublication | 6615f0c1-4abc-48fc-ac0a-fce560b02403 | |
relation.isProjectOfPublication | db3e2edb-b8af-487a-b76a-f6790ac2d86e | |
relation.isProjectOfPublication | 7f9ebad6-9f7d-4225-8694-48de17ea8b51 | |
relation.isProjectOfPublication.latestForDiscovery | db3e2edb-b8af-487a-b76a-f6790ac2d86e |