Repository logo
 
Publication

Demand Response Contextual Remuneration of Prosumers with Distributed Storage

dc.contributor.authorSilva, Cátia
dc.contributor.authorFaria, Pedro
dc.contributor.authorRibeiro, Bruno
dc.contributor.authorGomes, Luis
dc.contributor.authorVale, Zita
dc.date.accessioned2023-02-02T10:39:37Z
dc.date.available2023-02-02T10:39:37Z
dc.date.issued2022
dc.description.abstractProsumers are emerging in the power and energy market to provide load flexibility to smooth the use of distributed generation. The volatile behavior increases the production prediction complexity, and the demand side must take a step forward to participate in demand response events triggered by a community manager. If balance is achieved, the participants should be compensated for the discomfort caused. The authors in this paper propose a methodology to optimally manage a community, with a focus on the remuneration of community members for the provided flexibility. Four approaches were compared and evaluated, considering contextual tariffs. The obtained results show that it was possible to improve the fairness of the remuneration, which is an incentive and compensation for the loss of comfort. The single fair remuneration approach was more beneficial to the community manager, since the total remuneration was lower than the remaining approaches (163.81 m.u. in case study 3). From the prosumers’ side, considering a clustering method was more advantageous, since higher remuneration was distributed for the flexibility provided (196.27 m.u. in case study 3).pt_PT
dc.description.sponsorshipThis work is supported by FEDER Funds through COMPETE program and by National Funds through FCT under projects UIDP/00760/2020, UIDB/00760/2020, and CEECIND/01423/2021. Cátia Silva is supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) with Ph.D. grant reference SFRH/BD/144200/2019.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.3390/s22228877pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/22100
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPIpt_PT
dc.relationCEECIND/01423/2021pt_PT
dc.relationResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
dc.relationResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
dc.relationEffective DR gathering and deployment for intensive renewable integration using aggregation and machine learning
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/22/22/8877pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectContextual remunerationpt_PT
dc.subjectBattery energy storagept_PT
dc.subjectDemand responsept_PT
dc.subjectOptimal managementpt_PT
dc.subjectSmart gridspt_PT
dc.titleDemand Response Contextual Remuneration of Prosumers with Distributed Storagept_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
oaire.awardTitleResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
oaire.awardTitleEffective DR gathering and deployment for intensive renewable integration using aggregation and machine learning
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F00760%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00760%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT//SFRH%2FBD%2F144200%2F2019/PT
oaire.citation.issue22pt_PT
oaire.citation.startPage8877pt_PT
oaire.citation.titleSensorspt_PT
oaire.citation.volume22pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
person.familyNameSilva
person.familyNameFaria
person.familyNameVale
person.givenNameCátia
person.givenNamePedro
person.givenNameZita
person.identifier632184
person.identifier.ciencia-id5318-DCFD-218D
person.identifier.ciencia-idB212-2309-F9C3
person.identifier.ciencia-id6F19-CB63-C8A8
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0001-8306-4568
person.identifier.orcid0000-0002-5982-8342
person.identifier.orcid0000-0002-8597-3383
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id7004115775
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication5eebf2bb-32f6-4593-a536-6db611d531e8
relation.isAuthorOfPublication35e6a4ab-f644-4bc5-b6fc-9fd89c23d6c6
relation.isAuthorOfPublicationeaac2304-a007-4531-8398-ee9f426c2f52
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscovery5eebf2bb-32f6-4593-a536-6db611d531e8
relation.isProjectOfPublication6eb94c83-adf9-4d9d-a75c-be95f44e3ca5
relation.isProjectOfPublicationdb3e2edb-b8af-487a-b76a-f6790ac2d86e
relation.isProjectOfPublication251e8359-504b-430d-b43d-84097b01ccfe
relation.isProjectOfPublication.latestForDiscoverydb3e2edb-b8af-487a-b76a-f6790ac2d86e

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART27_GECAD_ZAV_2022.pdf
Size:
4.39 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: