Publication
Clustering distributed Energy Storage units for the aggregation of optimized local solar energy
| dc.contributor.author | Silva, Cátia | |
| dc.contributor.author | Faria, Pedro | |
| dc.contributor.author | Fernandes, António | |
| dc.contributor.author | Vale, Zita | |
| dc.date.accessioned | 2022-12-21T11:42:06Z | |
| dc.date.available | 2022-12-21T11:42:06Z | |
| dc.date.issued | 2022 | |
| dc.description.abstract | Active communities are emerging thanks to the necessity of creating a cleaner and safer energy system. The growing concern regarding climate change urges a solution to remove fossil fuels from the production equation. The Distributed Generation (DG) technologies are presented as a substitute, but the main resources’ behavior is highly uncertain. Flexibility from the demand side is needed. In this way, the authors resort to mixed-integer linear programming optimization to schedule the active resources introduced by the Smart Grid concept: DG, Demand Response programs, and Energy Storage Systems. In this study, the last one is the focus where the impact of these technologies in an active community is analyzed and discussed. The authors performed a clustering method to identify patterns on Energy Storage System (ESS) profiles, finding the optimal number of clusters first. The results show the importance of ESS from both Aggregator and active consumer perspectives. | pt_PT |
| dc.description.sponsorship | This work has received funding from FEDER Funds through COMPETE program and from National Funds through (FCT) under the projects UIDB/00760/2020, COLORS (PTDC/EEI-EEE/28967/2017), CEECIND/02887/ 2017, and SFRH/BD/144200/2019, and from ANI (project GREEDi). | pt_PT |
| dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
| dc.identifier.doi | 10.1016/j.egyr.2022.01.043 | pt_PT |
| dc.identifier.uri | http://hdl.handle.net/10400.22/21226 | |
| dc.language.iso | eng | pt_PT |
| dc.peerreviewed | yes | pt_PT |
| dc.publisher | Elsevier | pt_PT |
| dc.relation | Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development | |
| dc.relation | COLORS - CONTEXTUAL LOAD FLEXIBILITY REMUNERATION STRATEGIES | |
| dc.relation | Not Available | |
| dc.relation | Effective DR gathering and deployment for intensive renewable integration using aggregation and machine learning | |
| dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S2352484722000439 | pt_PT |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | pt_PT |
| dc.subject | Clustering | pt_PT |
| dc.subject | K-means | pt_PT |
| dc.subject | Energy Storage | pt_PT |
| dc.subject | Scheduling | pt_PT |
| dc.subject | Prosumers | pt_PT |
| dc.title | Clustering distributed Energy Storage units for the aggregation of optimized local solar energy | pt_PT |
| dc.type | journal article | |
| dspace.entity.type | Publication | |
| oaire.awardTitle | Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development | |
| oaire.awardTitle | COLORS - CONTEXTUAL LOAD FLEXIBILITY REMUNERATION STRATEGIES | |
| oaire.awardTitle | Not Available | |
| oaire.awardTitle | Effective DR gathering and deployment for intensive renewable integration using aggregation and machine learning | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00760%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/9471 - RIDTI/PTDC%2FEEI-EEE%2F28967%2F2017/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/CEEC IND 2017/CEECIND%2F02887%2F2017%2FCP1417%2FCT0003/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT//SFRH%2FBD%2F144200%2F2019/PT | |
| oaire.citation.endPage | 410 | pt_PT |
| oaire.citation.startPage | 405 | pt_PT |
| oaire.citation.title | Energy Reports | pt_PT |
| oaire.citation.volume | 8 | pt_PT |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 9471 - RIDTI | |
| oaire.fundingStream | CEEC IND 2017 | |
| person.familyName | Faria | |
| person.familyName | Vale | |
| person.givenName | Pedro | |
| person.givenName | Zita | |
| person.identifier | 632184 | |
| person.identifier.ciencia-id | B212-2309-F9C3 | |
| person.identifier.ciencia-id | 721B-B0EB-7141 | |
| person.identifier.orcid | 0000-0002-5982-8342 | |
| person.identifier.orcid | 0000-0002-4560-9544 | |
| person.identifier.rid | A-5824-2012 | |
| person.identifier.scopus-author-id | 7004115775 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| rcaap.rights | openAccess | pt_PT |
| rcaap.type | article | pt_PT |
| relation.isAuthorOfPublication | 35e6a4ab-f644-4bc5-b6fc-9fd89c23d6c6 | |
| relation.isAuthorOfPublication | ff1df02d-0c0f-4db1-bf7d-78863a99420b | |
| relation.isAuthorOfPublication.latestForDiscovery | ff1df02d-0c0f-4db1-bf7d-78863a99420b | |
| relation.isProjectOfPublication | db3e2edb-b8af-487a-b76a-f6790ac2d86e | |
| relation.isProjectOfPublication | b3dd8bd2-b256-4686-a5d8-31fc725f0204 | |
| relation.isProjectOfPublication | e9f5cdee-c0fb-4e2d-81bf-9316a3752526 | |
| relation.isProjectOfPublication | 251e8359-504b-430d-b43d-84097b01ccfe | |
| relation.isProjectOfPublication.latestForDiscovery | db3e2edb-b8af-487a-b76a-f6790ac2d86e |
