Logo do repositório
 
Publicação

Fractional differentiation and its applications I - editorial

dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorMachado, J. A.Tenreiro
dc.contributor.authorChen, Wen
dc.date.accessioned2023-11-03T15:59:46Z
dc.date.available2025-01-01T01:30:59Z
dc.date.issued2013
dc.description.abstractFractional calculus (FC) was originated from a genial idea of L’Hopital, who wrote Leibniz a letter dated September 30th, 1695, asking about a particular definition of the derivative of order n = 1/2. FC means the theory of differentiation and integration of noninteger order and represents the generalization of the classical differential and integral calculus. Therefore, some of the properties of the fractional integral and derivatives differ from the classical ones in order to allow its adoption in a broader range of cases, which cannot be properly described by the classical integer-order calculus. FC is presently considered to bpt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1016/j.camwa.2013.06.006pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/23836
dc.language.isoengpt_PT
dc.publisherElsevierpt_PT
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0898122113003714?via%3Dihubpt_PT
dc.subjectFractional calculuspt_PT
dc.titleFractional differentiation and its applications I - editorialpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.issue5pt_PT
oaire.citation.startPage575pt_PT
oaire.citation.titleComputers & Mathematics with Applicationspt_PT
oaire.citation.volume66pt_PT
person.familyNameTenreiro Machado
person.givenNameJ. A.
person.identifier.ciencia-id7A18-4935-5B29
person.identifier.orcid0000-0003-4274-4879
person.identifier.ridM-2173-2013
person.identifier.scopus-author-id55989030100
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication82cd5c17-07b6-492b-b3e3-ecebdad1254f
relation.isAuthorOfPublication.latestForDiscovery82cd5c17-07b6-492b-b3e3-ecebdad1254f

Ficheiros

Principais
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
ART_DEE_JTM_2013.pdf
Tamanho:
121.26 KB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: