Repository logo
 
Publication

WCCI/GECCO 2020 Competition on Evolutionary Computation in the Energy Domain: An overview from the winner perspective

dc.contributor.authorRodríguez-González, Ansel Y.
dc.contributor.authorLezama, Fernando
dc.contributor.authorMartínez-López, Yoan
dc.contributor.authorMadera, Julio
dc.contributor.authorSoares, João
dc.contributor.authorVale, Zita
dc.date.accessioned2023-02-02T12:45:36Z
dc.date.available2023-02-02T12:45:36Z
dc.date.issued2022
dc.description.abstractEvolutionary computation is attracting attention in the energy domain as an alternative to tackle inherent mathematical complexity of some problems related to high-dimensionality, non-linearity, non-convexity, multimodality, or discontinuity of the search space. In this context, the research community launched the 2020 ”Competition on Evolutionary Computation in the Energy Domain: Smart Grid Applications” and an associated simulation framework to evaluate the performance of state-of-the-art evolutionary algorithms solving real-world problems. The competition includes two testbeds: (1) Day-ahead energy resource management problem in smart grids under uncertain environments; and (2) Bi-level optimization of end-users’ bidding strategies in local energy markets. This paper describes the general framework of the competition, the two testbeds, and the evolutionary algorithms that participated. A special section is dedicated to the winner approach, CUMDANCauchy++, a cellular Estimation Distribution Algorithm (EDA). A thorough analysis of the results reveals that, led by CUMDANCauchy++, the top three algorithms form a block of approaches all based on cellular EDAs. Moreover, for testbed 2, in which CUMDANCauchy++ did not achieve the best performance, the winner approach is also based on EDAs. The outcomes of the competition show that CUMDANCauchy++ is an effective algorithm solving both testbeds, and EDAs emerge as an algorithm class with promising performance for solving smart grid applications.pt_PT
dc.description.sponsorshipThis research was partially supported by the National Council of Science and Technology (CONACYT) under project Cátedras CONACYT 2143. Also, this work has received funding from FEDER Funds through COMPETE program and from National Funds through (FCT) under the projects UIDB/00760/2020 and MAS-Society (PTDC /EEI-EEE/28954/2017). Joao Soares was supported by the grant CEECIND/02814/2017 from National Funds through FCT .pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1016/j.asoc.2022.109162pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/22116
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relationPTDC /EEI-EEE/28954/2017pt_PT
dc.relationResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1568494622004148?via%3Dihubpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectEvolutionary algorithmspt_PT
dc.subjectEstimation distribution algorithmspt_PT
dc.subjectOptimizationpt_PT
dc.subjectSmart gridspt_PT
dc.subjectStatistical analysispt_PT
dc.titleWCCI/GECCO 2020 Competition on Evolutionary Computation in the Energy Domain: An overview from the winner perspectivept_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00760%2F2020/PT
oaire.citation.startPage109162pt_PT
oaire.citation.titleApplied Soft Computingpt_PT
oaire.citation.volume125pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameLezama
person.familyNameSoares
person.familyNameVale
person.givenNameFernando
person.givenNameJoão
person.givenNameZita
person.identifier1043580
person.identifier632184
person.identifier.ciencia-idE31F-56D6-1E0F
person.identifier.ciencia-id1612-8EA8-D0E8
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0001-8638-8373
person.identifier.orcid0000-0002-4172-4502
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridA-6945-2017
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id36810077500
person.identifier.scopus-author-id35436109600
person.identifier.scopus-author-id7004115775
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication6a55317b-92c2-404f-8542-c7a73061cc9b
relation.isAuthorOfPublication9ece308b-6d79-4cec-af91-f2278dcc47eb
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscovery9ece308b-6d79-4cec-af91-f2278dcc47eb
relation.isProjectOfPublicationdb3e2edb-b8af-487a-b76a-f6790ac2d86e
relation.isProjectOfPublication.latestForDiscoverydb3e2edb-b8af-487a-b76a-f6790ac2d86e

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ART38_GECAD_JAN_2022.pdf
Size:
1.15 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: