Abstract(s)
A crescente adoção do fabrico aditivo, nomeadamente através da tecnologia Fused Deposition
Modeling (FDM), tem impulsionado novas possibilidades no design e produção de
componentes. No entanto, a integração destas peças em estruturas maiores levanta desafios
importantes, nomeadamente limitações nas dimensões fabricáveis, na qualidade das
superfícies de contacto e na compatibilidade entre os materiais dos aderentes e os adesivos
utilizados.
A presente dissertação analisa o comportamento estrutural de juntas adesivas com aderentes
fabricados por impressão 3D, utilizando a tecnologia FDM. O trabalho desenvolveu-se numa
abordagem experimental e numérica, com o objetivo de avaliar a influência da geometria da
junta e do tipo de adesivo no desempenho mecânico sob solicitações de flexão. Foram
estudadas três configurações geométricas de juntas (SLJ, SCARF e STEP), combinadas com dois
adesivos de naturezas distintas (Araldite® 2015 e Sikaforce® 7752) e três materiais poliméricos
para os aderentes (PLA, PETG e ABS). As juntas foram submetidas a ensaios experimentais, para
a caracterização de parâmetros como resistência, rigidez, energia de rotura e modos de rotura.
Paralelamente, foram desenvolvidos modelos numéricos com recurso ao método dos
elementos finitos e modelos de dano coesivo (MDC), implementados no software Abaqus®,
calibrados com base nos resultados experimentais. Os resultados indicaram que a geometria
SCARF apresentou o melhor desempenho estrutural, enquanto a SLJ revelou fragilidades
significativas. O adesivo Araldite® 2015 demonstrou maior rigidez e resistência, ao passo que o
Sikaforce® 7752 evidenciou maior capacidade de dissipação energética em algumas
configurações. Os modelos numéricos reproduziram adequadamente as tendências
experimentais, embora com algumas discrepâncias em termos de rigidez e energia de rotura.
The growing adoption of additive manufacturing, particularly through Fused Deposition Modeling (FDM) technology, has opened new possibilities in the design and production of components. However, integrating such parts into larger structures presents significant challenges, particularly in terms of build size limitations, surface quality, and the compatibility between adherend materials and adhesives. This dissertation analyzes the structural behavior of adhesive joints with adherends produced via 3D printing using the FDM process. The study follows both experimental and numerical approaches, aiming to assess the influence of joint geometry and adhesive type on the mechanical performance under bending loads. Three joint geometries (SLJ or single-lap joint, SCARF, and STEP) were evaluated, combined with two adhesives of different characteristics (Araldite® 2015 and Sikaforce® 7752) and three polymeric materials for the adherends (PLA, PETG, and ABS). The joints were subjected to experimental tests to characterize parameters such as strength, stiffness, fracture energy, and failure modes. In parallel, numerical models were developed using the finite element method and cohesive zone models (CZM), implemented in Abaqus® software and calibrated based on the experimental results. The results showed that SCARF geometry exhibited the best structural performance, while the SLJ configuration presented significant weaknesses. Araldite® 2015 demonstrated higher stiffness and strength, whereas Sikaforce® 7752 showed greater energy dissipation capability in some configurations. The numerical models accurately reproduced the experimental trends, although some discrepancies were observed in terms of stiffness and fracture energy.
The growing adoption of additive manufacturing, particularly through Fused Deposition Modeling (FDM) technology, has opened new possibilities in the design and production of components. However, integrating such parts into larger structures presents significant challenges, particularly in terms of build size limitations, surface quality, and the compatibility between adherend materials and adhesives. This dissertation analyzes the structural behavior of adhesive joints with adherends produced via 3D printing using the FDM process. The study follows both experimental and numerical approaches, aiming to assess the influence of joint geometry and adhesive type on the mechanical performance under bending loads. Three joint geometries (SLJ or single-lap joint, SCARF, and STEP) were evaluated, combined with two adhesives of different characteristics (Araldite® 2015 and Sikaforce® 7752) and three polymeric materials for the adherends (PLA, PETG, and ABS). The joints were subjected to experimental tests to characterize parameters such as strength, stiffness, fracture energy, and failure modes. In parallel, numerical models were developed using the finite element method and cohesive zone models (CZM), implemented in Abaqus® software and calibrated based on the experimental results. The results showed that SCARF geometry exhibited the best structural performance, while the SLJ configuration presented significant weaknesses. Araldite® 2015 demonstrated higher stiffness and strength, whereas Sikaforce® 7752 showed greater energy dissipation capability in some configurations. The numerical models accurately reproduced the experimental trends, although some discrepancies were observed in terms of stiffness and fracture energy.
Description
Keywords
Adhesive bonding Adhesive joint analysis Additive manufacturing FDM Numerical modeling Cohesive damage Finite Element Method 3D printing Ligações adesivas Análise de juntas adesivas Fabrico aditivo FDM Modelação numérica Dano coesivo Método de elementos finitos Impressão 3D
