Name: | Description: | Size: | Format: | |
---|---|---|---|---|
9.99 MB | Adobe PDF |
Advisor(s)
Abstract(s)
A utilização de simuladores é atualmente uma das ferramentas mais usadas, tanto a nível académico como no mercado de trabalho. Ciente de tal facto, o Instituto Superior de Engenharia do Porto (ISEP), durante os anos 1990, adquiriu um simulador para o Laboratório de Sistemas de Energia, com a intenção de simular uma rede de produção, transporte, distribuição e consumo de energia elétrica. O objetivo era o de colocar os alunos do curso de Engenharia Eletrotecnia - Sistemas Elétricos de Energia o mais próximo possível da realidade encontrada no mercado de trabalho na área da energia elétrica.
Com o passar dos anos os problemas acumularam-se e, no decorrer dos últimos anos, o simulador deixou de ser usado. No início da segunda década deste século o equipamento foi alvo de uma intervenção, no âmbito de uma dissertação de mestrado, com sucesso. O simulador voltou a funcionar mas novas avarias sucederam-se, deixando-o inoperacional. Assim sendo, foi proposta uma nova dissertação com o objetivo de voltar a colocar o simulador a funcionar e de forma mais robusta.
Os passos a seguir passaram pela deteção das avarias que estavam a condicionar o bom funcionamento e pela substituição de todos os componentes avariados. A primeira etapa incidiu na verificação de todas as alimentações elétricas aos diversos componentes, tal como verificar se as fontes de alimentação estavam a fornecer a tensão pretendida, pois apesar deste simulador ser alimentado através de um sistema de três fases mais neutro (400 / 230 V) e frequência de 50 Hz, fornecidos diretamente pela rede de distribuição de energia elétrica, os diversos componentes que compõem esta máquina de simulação são alimentados com diversos níveis de tensão, o que obriga à utilização de fontes de alimentação com níveis de tensão que vão desde os 10 V aos 50 V em corrente contínua (CC).
O maior problema que o simulador apresentou estava relacionado com os contactores e com os blocos de contactos auxiliares. Apesar de eletricamente funcionarem, isto é, alimentando a bobina com 230 V em corrente alternada (CA) pelos contactos A1 e A2, atrai um núcleo móvel obrigando os contactos a fecharem ou a abrirem, conforme sejam contactos normalmente abertos (NA) ou normalmente fechados (NF). Os blocos de contactos auxiliares, que estão anexados aos contactores e trabalham em sintonia com estes.
Devido aos contactores datarem do tempo em que o simulador foi construído, os contactos auxiliares internos construídos em metal, apresentavam sinais de oxidação, não permitindo o correto funcionamento. Após todos os contactores e todos os blocos de contactos auxiliares terem sido testados, chegou-se à conclusão de que a maior parte apresentava um funcionamento defeituoso e a solução encontrada foi a substituição total destes componentes.
Outros problemas foram detetados, como por exemplo, condutores desligados, botoneira de simulação do seccionador IE4 do painel C6 avariada e outros defeitos que vão ser referidos no capítulo dedicado a este assunto.
Como complemento ao trabalho executado, procedeu-se à elaboração de guiões para as manobras possíveis de serem executadas com o hardware disponível, as alterações que são exequíveis de serem feitas ao simulador, neste caso adicionando novos componentes propostos e, por último, alguns guiões de trabalhos propostos no âmbito das unidades curriculares da Licenciatura de Eletrotecnia - Sistemas Elétricos de Energia, dirigidos aos docentes.
The use of simulators is currently one of the most used tools, both academically and in the labour market. Aware of this fact, the "Instituto Superior de Engenharia do Porto" (ISEP), during the 1990s, acquired a simulator to the Power Systems Laboratory, with the intention of simulating a network of production, transport, distribution and consumption of electrical energy. The goal would be to put students of Electrotechnical - Electrical Power Systems as much as possible close to the reality found in the electrical power labour market. Over the years the problems have accumulated, and over the past few years, the simulator is no longer used. At the beginning of the second decade of this century, the equipment was subject to an intervention as part of a master's dissertation, with successfully. The simulator returned to work but new damages succeeded. Therefore, it was proposed a new dissertation in order to replace the simulator to work. The steps passed to the detection of faults that were to condition the smooth operation and replacement of all components detected as faulty. The first step went through verification of all power supplies to the various components, such as check if the power supplies were to provide the desired tension, because in spite of this simulator is supplied with three-phase voltage of 400 V with neutral, 50 Hz, supplied directly by distribution network electricity, the various components that make up this simulation machine are supplied with different voltage levels, which requires the use of power supplies with voltage levels ranging from 10 V to 50 V in direct current (DC). The biggest problem that the simulator was presented with contactors and auxiliary contact blocks. Although electrical work, namely, feeding the coil with 230 V alternating current (AC) by A1 and A2 contacts, attracts a movable core forcing the contacts to close or open, as are normally open contacts (NO) or normally closed (NC). Auxiliary contact blocks, which are attached to the contactors, work in line with these. Due to the contactors date from the time when the simulator was built, the internal auxiliary contacts constructed of metal, showed signs of oxidation, preventing proper operation. After all contactors and auxiliary contact blocks have been tested, came to the conclusion that most had a malfunction and the solution was the total replacement of these components. Other problems were detected, such as disconnected wires, switch of the simulator from panel IE4 damaged and other defects that will be mentioned in the chapter dedicated to this part. As a complement to the work done, it proceeded to the execution of scripts for possible manoeuvres to be performed with the available hardware, the changes that are feasible to be made to the simulator, in this case adding new proposed components and, finally, some work guidelines proposed under the courses of degree of Electrotechnical - Electrical Energy Systems, directed to teachers.
The use of simulators is currently one of the most used tools, both academically and in the labour market. Aware of this fact, the "Instituto Superior de Engenharia do Porto" (ISEP), during the 1990s, acquired a simulator to the Power Systems Laboratory, with the intention of simulating a network of production, transport, distribution and consumption of electrical energy. The goal would be to put students of Electrotechnical - Electrical Power Systems as much as possible close to the reality found in the electrical power labour market. Over the years the problems have accumulated, and over the past few years, the simulator is no longer used. At the beginning of the second decade of this century, the equipment was subject to an intervention as part of a master's dissertation, with successfully. The simulator returned to work but new damages succeeded. Therefore, it was proposed a new dissertation in order to replace the simulator to work. The steps passed to the detection of faults that were to condition the smooth operation and replacement of all components detected as faulty. The first step went through verification of all power supplies to the various components, such as check if the power supplies were to provide the desired tension, because in spite of this simulator is supplied with three-phase voltage of 400 V with neutral, 50 Hz, supplied directly by distribution network electricity, the various components that make up this simulation machine are supplied with different voltage levels, which requires the use of power supplies with voltage levels ranging from 10 V to 50 V in direct current (DC). The biggest problem that the simulator was presented with contactors and auxiliary contact blocks. Although electrical work, namely, feeding the coil with 230 V alternating current (AC) by A1 and A2 contacts, attracts a movable core forcing the contacts to close or open, as are normally open contacts (NO) or normally closed (NC). Auxiliary contact blocks, which are attached to the contactors, work in line with these. Due to the contactors date from the time when the simulator was built, the internal auxiliary contacts constructed of metal, showed signs of oxidation, preventing proper operation. After all contactors and auxiliary contact blocks have been tested, came to the conclusion that most had a malfunction and the solution was the total replacement of these components. Other problems were detected, such as disconnected wires, switch of the simulator from panel IE4 damaged and other defects that will be mentioned in the chapter dedicated to this part. As a complement to the work done, it proceeded to the execution of scripts for possible manoeuvres to be performed with the available hardware, the changes that are feasible to be made to the simulator, in this case adding new proposed components and, finally, some work guidelines proposed under the courses of degree of Electrotechnical - Electrical Energy Systems, directed to teachers.
Description
Keywords
Simulador Manobras Produção Transporte Distribuição Energia elétrica Cargas Simulator Manoeuvres Production Transport Distribution Electrical energy Loads