Logo do repositório
 
Publicação

GA Optimization Technique for Portfolio Optimization of Electricity Market Participation

dc.contributor.authorFaia, Ricardo
dc.contributor.authorPinto, Tiago
dc.contributor.authorVale, Zita
dc.date.accessioned2017-07-07T14:12:26Z
dc.date.embargo2117
dc.date.issued2016
dc.description.abstractThis paper presents a methodology based on genetic Algorithms (GA) to solve the problem of optimal participation in multiple electricity markets. With the emergence of new requirements for electrical power markets, it has become fundamental to develop tools to aid in decision making, understanding the functioning of markets and forecast iterations that occur between the different entities in the market. Artificial intelligence plays a crucial role in the development of these tools. Using artificial intelligence techniques, it is possible to simulate the different existing players in the market, to enable these players to be adaptive to any situation, and to model any type of trading. Artificial intelligence based metaheuristic optimization tools allow solving problems in a short time, and with very close results to those that deterministic techniques are able to achieve, at the cost of a high execution time. The achieved results, using a simulation scenario based on real data from the Iberian electricity market, show that the proposed method is able to reach better results than previous implementations of a Particle Swarm Optimization (PSO) and a Simulated Annealing (SA) methods, while achieving very similar objective function results to those of a deterministic approach, in a much faster execution time.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1109/SSCI.2016.7849858pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/10002
dc.language.isoengpt_PT
dc.publisherInstitute of Electrical and Electronics Engineerspt_PT
dc.relation.ispartofseriesSSCI;2016
dc.relation.publisherversionhttp://ieeexplore.ieee.org/document/7849858/pt_PT
dc.subjectArtificial intelligencept_PT
dc.subjectElectricity Marketspt_PT
dc.subjectGenetic Algorithmpt_PT
dc.subjectPortfolio Optimizationpt_PT
dc.titleGA Optimization Technique for Portfolio Optimization of Electricity Market Participationpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.titlePROCEEDINGS OF 2016 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCEpt_PT
person.familyNamePinto
person.familyNameVale
person.givenNameTiago
person.givenNameZita
person.identifierR-000-T7J
person.identifier632184
person.identifier.ciencia-id2414-9B03-C4BB
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0001-8248-080X
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridT-2245-2018
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id35219107600
person.identifier.scopus-author-id7004115775
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication8d58ddc0-1023-47c0-a005-129d412ce98d
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscoveryff1df02d-0c0f-4db1-bf7d-78863a99420b

Ficheiros

Principais
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
ART_ZitaVale_GECAD_2016.pdf
Tamanho:
826.04 KB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: