Repository logo
 
Publication

Absolutely stable difference scheme for a general class of singular perturbation problems

dc.contributor.authorEl-Zahar, Essam R.
dc.contributor.authorAlotaibi, A. M.
dc.contributor.authorEbaid, Abdelhalim
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorMachado, J. A. Tenreiro
dc.contributor.authorHamed, Y. S.
dc.date.accessioned2021-09-24T14:52:42Z
dc.date.available2021-09-24T14:52:42Z
dc.date.issued2020
dc.description.abstractThis paper presents an absolutely stable noniterative difference scheme for solving a general class of singular perturbation problems having left, right, internal, or twin boundary layers. The original two-point second-order singular perturbation problem is approximated by a first-order delay differential equation with a variable deviating argument. This delay differential equation is transformed into a three-term difference equation that can be solved using the Thomas algorithm. The uniqueness and stability analysis are discussed, showing that the method is absolutely stable. An optimal estimate for the deviating argument is obtained to take advantage of the second-order accuracy of the central finite difference method in addition to the absolute stability property. Several problems having left, right, interior, or twin boundary layers are considered to validate and illustrate the method. The numerical results confirm that the deviating argument can stabilize the unstable discretized differential equation and that the new approach is effective in solving the considered class of singular perturbation problems.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1186/s13662-020-02862-zpt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/18546
dc.language.isoengpt_PT
dc.publisherSpringerpt_PT
dc.relation.publisherversionhttps://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-020-02862-zpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectSingular perturbation problemspt_PT
dc.subjectFinite difference schemespt_PT
dc.subjectAbsolutely stablept_PT
dc.subjectBoundary and interior layerspt_PT
dc.titleAbsolutely stable difference scheme for a general class of singular perturbation problemspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.issue1pt_PT
oaire.citation.titleAdvances in Difference Equationspt_PT
oaire.citation.volume2020pt_PT
person.familyNameTenreiro Machado
person.givenNameJ. A.
person.identifier.ciencia-id7A18-4935-5B29
person.identifier.orcid0000-0003-4274-4879
person.identifier.ridM-2173-2013
person.identifier.scopus-author-id55989030100
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication82cd5c17-07b6-492b-b3e3-ecebdad1254f
relation.isAuthorOfPublication.latestForDiscovery82cd5c17-07b6-492b-b3e3-ecebdad1254f

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART_DEE_JTM_2020.pdf
Size:
1.92 MB
Format:
Adobe Portable Document Format