Repository logo
 
Loading...
Thumbnail Image
Publication

An Experimental Study for Tracking Crowd in Smart Cities

Use this identifier to reference this record.
Name:Description:Size:Format: 
ART_CISTER_2018.pdf3.46 MBAdobe PDF Download

Advisor(s)

Abstract(s)

Knowledge about people density and mobility patterns is the key element toward efficient urban development in smart cities. The main challenges in large-scale people tracking are the recognition of people density in a specific area and tracking the people flow path. To address these challenges, we present SenseFlow, a lightweight people tracking system for smart cities. SenseFlow utilizes off-the-shelf sensors that sniff probe requests periodically polled by user’s smartphones in a passive manner. We demonstrate the feasibility of SenseFlow by building a proof-of-concept prototype and undertaking extensive evaluations in real-world settings. We deploy the system in one laboratory to study office hours of researchers, a crowded public area in a city to evaluate the scalability and performance “in the wild,” and four classrooms in the university to monitor the number of students. We also evaluate SenseFlow with varying walking speeds and different models of smartphones to investigate the people flow tracking performance.

Description

Early Access

Keywords

Mobile computing Sensor systems and applications System analysis System performance Wireless application protocol

Citation

Research Projects

Organizational Units

Journal Issue

Publisher

Institute of Electrical and Electronics Engineers

CC License

Altmetrics