Repository logo
 
Publication

Knowledge management system for big data in a smart electricity grid context

dc.contributor.authorVinagre, Eugénia
dc.contributor.authorPinto, Tiago
dc.contributor.authorPinheiro, Gil
dc.contributor.authorVale, Zita
dc.contributor.authorRamos, Carlos
dc.contributor.authorCorchado, Juan Manuel
dc.date.accessioned2021-03-08T18:36:46Z
dc.date.available2021-03-08T18:36:46Z
dc.date.issued2018
dc.description.abstractWe have been witnessing a real explosion of information, due in large part to the development in Information and Knowledge Technologies (ICTs). As information is the raw material for the discovery of knowledge, there has been a rapid growth, both in the scientific community and in ICT itself, in the study of the Big Data phenomenon (Kaisler et al., 2014). The concept of Smart Grids (SG) has emerged as a way of rethinking how to produce and consume energy imposed by economic, political and ecological issues (Lund, 2014). To become a reality, SGs must be supported by intelligent and autonomous IT systems to make the right decisions in real time. Knowledge needed for real-time decision-making can only be achieved if SGs are equipped with systems capable of efficiently managing all the surrounding information. Thus, this paper proposes a system for the management of information in the context of SG to enable the monitoring, in real time, of the events that occur in the ecosystem and to predict following events.pt_PT
dc.description.sponsorshipThis work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641794 (project DREAM-GO) and from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2013.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/17313
dc.language.isoengpt_PT
dc.publisherIFKApt_PT
dc.relationEnabling Demand Response for short and real-time Efficient And Market Based smart Grid Operation - An intelligent and real-time simulation approach
dc.subjectBig datapt_PT
dc.subjectData analyticspt_PT
dc.subjectKnowledge managementpt_PT
dc.subjectSmart gridspt_PT
dc.titleKnowledge management system for big data in a smart electricity grid contextpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleEnabling Demand Response for short and real-time Efficient And Market Based smart Grid Operation - An intelligent and real-time simulation approach
oaire.awardURIinfo:eu-repo/grantAgreement/EC/H2020/641794/EU
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FEEA%2F00760%2F2013/PT
oaire.citation.conferencePlaceSt. Petersburg, Russiapt_PT
oaire.citation.titleInternational Forum on Knowledge Asset Dynamics, 2017pt_PT
oaire.fundingStreamH2020
oaire.fundingStream5876
person.familyNamePinto
person.familyNameVale
person.familyNameRamos
person.givenNameTiago
person.givenNameZita
person.givenNameCarlos
person.identifierR-000-T7J
person.identifier632184
person.identifier.ciencia-id2414-9B03-C4BB
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.ciencia-id1011-FAFC-AEBA
person.identifier.orcid0000-0001-8248-080X
person.identifier.orcid0000-0002-4560-9544
person.identifier.orcid0000-0002-5143-1711
person.identifier.ridT-2245-2018
person.identifier.ridA-5824-2012
person.identifier.ridK-7403-2014
person.identifier.scopus-author-id35219107600
person.identifier.scopus-author-id7004115775
person.identifier.scopus-author-id7201559105
project.funder.identifierhttp://doi.org/10.13039/501100008530
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameEuropean Commission
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication8d58ddc0-1023-47c0-a005-129d412ce98d
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication43ef055e-80e6-4b31-8400-2d3592927e03
relation.isAuthorOfPublication.latestForDiscovery8d58ddc0-1023-47c0-a005-129d412ce98d
relation.isProjectOfPublication4a092e97-cc2f-4f57-8d3c-cf1709963516
relation.isProjectOfPublication237af9d5-70ed-4e45-9f10-3853d860255e
relation.isProjectOfPublication.latestForDiscovery237af9d5-70ed-4e45-9f10-3853d860255e

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
COM_GECAD_IFKAD_2017.pdf
Size:
1.22 MB
Format:
Adobe Portable Document Format