Repository logo
 
Publication

A Contextual Reinforcement Learning Approach for Electricity Consumption Forecasting in Buildings

dc.contributor.authorRamos, Daniel
dc.contributor.authorFaria, Pedro
dc.contributor.authorGomes, Luis
dc.contributor.authorVale, Zita
dc.date.accessioned2023-02-01T16:17:26Z
dc.date.available2023-02-01T16:17:26Z
dc.date.issued2022
dc.description.abstractThe energy management of buildings plays a vital role in the energy sector. With that in mind, and targeting an accurate forecast of electricity consumption, in the present paper is aimed to provide decision on the best prediction algorithm for each context. It may also increase energy usage related with renewables. In this way, the identification of different contexts is an advantage that may improve prediction accuracy. This paper proposes an innovative approach where a decision tree is used to identify different contexts in energy patterns. One week of five-minutes data sampling is used to test the proposed methodology. Each context is evaluated with a decision criterion based on reinforcement learning to find the best suitable forecasting algorithm. Two forecasting models are approached in this paper, based on K-Nearest Neighbor and Artificial Neural Networks, to illustrate the application of the proposed methodology. The reinforcement learning criterion consists of using the Multiarmed Bandit algorithm. The obtained results validate the adequacy of the proposed methodology in two case-studies: building; and industry.pt_PT
dc.description.sponsorshipThis article is a result of the project REal-Time support Infrastructure and Energy management for Intelligent carbon-Neutral smArt cities (RETINA) (NORTE-01-0145-FEDER-000062), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), and grant CEECIND/02887/2017. The authors acknowledge the work facilities and equipment provided by the Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development (GECAD) research center (UIDB/00760/2020) to the project team.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1109/ACCESS.2022.3180754pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/22081
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherIEEEpt_PT
dc.relationNORTE-01-0145-FEDER-000062pt_PT
dc.relationNot Available
dc.relationResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/9791389pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectConsumption forecastpt_PT
dc.subjectContextual operationpt_PT
dc.subjectDecision treept_PT
dc.subjectReinforcement learningpt_PT
dc.titleA Contextual Reinforcement Learning Approach for Electricity Consumption Forecasting in Buildingspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleNot Available
oaire.awardTitleResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/CEEC IND 2017/CEECIND%2F02887%2F2017%2FCP1417%2FCT0003/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00760%2F2020/PT
oaire.citation.endPage61374pt_PT
oaire.citation.startPage61366pt_PT
oaire.citation.titleIEEE Accesspt_PT
oaire.citation.volume10pt_PT
oaire.fundingStreamCEEC IND 2017
oaire.fundingStream6817 - DCRRNI ID
person.familyNameFaria
person.familyNameVale
person.givenNamePedro
person.givenNameZita
person.identifier632184
person.identifier.ciencia-idB212-2309-F9C3
person.identifier.ciencia-id6F19-CB63-C8A8
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0002-5982-8342
person.identifier.orcid0000-0002-8597-3383
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id7004115775
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication35e6a4ab-f644-4bc5-b6fc-9fd89c23d6c6
relation.isAuthorOfPublicationeaac2304-a007-4531-8398-ee9f426c2f52
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscovery35e6a4ab-f644-4bc5-b6fc-9fd89c23d6c6
relation.isProjectOfPublicatione9f5cdee-c0fb-4e2d-81bf-9316a3752526
relation.isProjectOfPublicationdb3e2edb-b8af-487a-b76a-f6790ac2d86e
relation.isProjectOfPublication.latestForDiscoverydb3e2edb-b8af-487a-b76a-f6790ac2d86e

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART20_GECAD_ZAV_2022.pdf
Size:
7.25 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: