Repository logo
 
Publication

Exposing and explaining fake news on-the-fly

dc.contributor.authorde Arriba Pérez, Francisco
dc.contributor.authorGarcía Méndez, Silvia
dc.contributor.authorLeal, Fátima
dc.contributor.authorMalheiro, Benedita
dc.contributor.authorBurguillo, Juan C.
dc.date.accessioned2024-07-31T08:48:06Z
dc.date.available2024-07-31T08:48:06Z
dc.date.issued2024
dc.descriptionOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work was partially supported by: (i) Xunta de Galicia grants ED481B-2021-118 and ED481B-2022-093, Spain; (ii) Portuguese national funds through FCT – Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) – as part of project UIDB/50014/2020; and (iii) University of Vigo/CISUG for open access charge.pt_PT
dc.description.abstractSocial media platforms enable the rapid dissemination and consumption of information. However, users instantly consume such content regardless of the reliability of the shared data. Consequently, the latter crowdsourcing model is exposed to manipulation. This work contributes with an explainable and online classification method to recognize fake news in real-time. The proposed method combines both unsupervised and supervised Machine Learning approaches with online created lexica. The profiling is built using creator-, content- and context-based features using Natural Language Processing techniques. The explainable classification mechanism displays in a dashboard the features selected for classification and the prediction confidence. The performance of the proposed solution has been validated with real data sets from Twitter and the results attain 80 % accuracy and macro F-measure. This proposal is the first to jointly provide data stream processing, profiling, classification and explainability. Ultimately, the proposed early detection, isolation and explanation of fake news contribute to increase the quality and trustworthiness of social media contents.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationde Arriba-Pérez, F., García-Méndez, S., Leal, F. et al. Exposing and explaining fake news on-the-fly. Mach Learn 113, 4615–4637 (2024). https://doi.org/10.1007/s10994-024-06527-wpt_PT
dc.identifier.doi10.1007/s10994-024-06527-wpt_PT
dc.identifier.issn0885-6125
dc.identifier.urihttp://hdl.handle.net/10400.22/25863
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringerpt_PT
dc.relationINESC TEC- Institute for Systems and Computer Engineering, Technology and Science
dc.relation.publisherversion0885-6125pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectArtificial intelligencept_PT
dc.subjectData stream architecturept_PT
dc.subjectMachine learningpt_PT
dc.subjectNatural language processingpt_PT
dc.subjectReliability and transparencypt_PT
dc.subjectSocial networkingpt_PT
dc.titleExposing and explaining fake news on-the-flypt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleINESC TEC- Institute for Systems and Computer Engineering, Technology and Science
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F50014%2F2020/PT
oaire.citation.endPage4637pt_PT
oaire.citation.issue7pt_PT
oaire.citation.startPage4615pt_PT
oaire.citation.titleMachine Learningpt_PT
oaire.citation.volume113pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNamede Arriba Pérez
person.familyNameGarcía Méndez
person.familyNameLeal
person.familyNameBENEDITA CAMPOS NEVES MALHEIRO
person.familyNameBurguillo Rial
person.givenNameFrancisco
person.givenNameSilvia
person.givenNameFátima
person.givenNameMARIA
person.givenNameJuan Carlos
person.identifier.ciencia-id2211-3EC7-B4B6
person.identifier.ciencia-id7A15-08FC-4430
person.identifier.orcid0000-0002-1140-679X
person.identifier.orcid0000-0003-0533-1303
person.identifier.orcid0000-0003-4418-2590
person.identifier.orcid0000-0001-9083-4292
person.identifier.orcid0000-0001-9869-7448
person.identifier.ridD-2450-2018
person.identifier.ridABF-4227-2020
person.identifier.ridY-3460-2019
person.identifier.ridE-9091-2016
person.identifier.scopus-author-id56891654000
person.identifier.scopus-author-id57201127684
person.identifier.scopus-author-id57190765181
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationa19e309f-d91c-4a21-9738-d892142068d7
relation.isAuthorOfPublicationd774ac26-d334-4808-be25-b375ebe78654
relation.isAuthorOfPublication8e77ca2d-3cb2-4346-927b-a706a5580c9e
relation.isAuthorOfPublicationbabd4fda-654a-4b59-952d-6113eebbb308
relation.isAuthorOfPublication8b2ea7d0-000e-4024-a0bf-89310239d975
relation.isAuthorOfPublication.latestForDiscovery8b2ea7d0-000e-4024-a0bf-89310239d975
relation.isProjectOfPublication5efdbedb-4666-4d5b-94f0-0a938b0d5ce4
relation.isProjectOfPublication.latestForDiscovery5efdbedb-4666-4d5b-94f0-0a938b0d5ce4

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
s10994-024-06527-w.pdf
Size:
1.95 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: