Name: | Description: | Size: | Format: | |
---|---|---|---|---|
10.01 MB | Adobe PDF |
Abstract(s)
Em Portugal, a indústria, de um modo geral, é responsável por cerca de um terço dos
consumos energéticos. Em sectores de atividade, como as indústrias agroalimentares ou
comércios, devido à sua importância e para os quais o frio industrial é crítico, as instalações
de frio podem atingir consumos na ordem dos 85% do consumo total da instalação. Por isso,
dada a crescente necessidade de melhorar a sustentabilidade energética destas instalações e
poupança nos consumos de energia, torna-se importante identificar oportunidades, conhecer
e analisar de forma rigorosa as instalações de modo a encontrar soluções, que possam
convergir por um caminho mais sustentável e ecológico nas instalações em causa, quer seja
pela utilização de tecnologias mais eficientes, como na produção da própria energia como
uma medida sustentável, um desafio de hoje e do futuro.
Este trabalho de estágio tem como foco a otimização do dimensionamento fotovoltaico,
tendo em consideração a legislação existente, de acordo com as alterações legislativas
recentes acerca do autoconsumo através de sistemas de produção fotovoltaicos. Para a
realização deste trabalho foi necessário adquirir conhecimentos essenciais que fundamentam
o seu estudo e desenvolvimento, sobre os equipamentos utilizados pelos sistemas
fotovoltaicos, bem como sobre as condições técnicas de funcionamento e regulamentação
que os regem.
Numa primeira fase, foi desenvolvida uma ferramenta de projeto em Excel, com o intuito de
dimensionar sistemas fotovoltaicos, em que seja possível selecionar equipamentos e fazer
uma análise económica da viabilidade de produção em autoconsumo, para instalações com
sistemas de refrigeração, sejam estes comerciais ou industriais. Depois de elaborada a
ferramenta de dimensionamento, foi utilizado o método comparativo para validar a mesma,
comparando-se os resultados de três casos práticos com os valores obtidos por outras três
ferramentas de cálculo existentes, de forma a comprovar a solução implementada e as
potencialidades da ferramenta desenvolvida. Através deste método, os desvios relativos
entre a ferramenta desenvolvida e os restantes programas, referentes à energia fotovoltaica
entregue à rede AC, variaram entre -1,64% e -10,12%, valores enquadrados com os desvios
máximos de ±10% recomendados pela literatura do setor. Porém, aferiu-se que os desvios se encontram, maioritariamente, associados a pressupostos existentes nos diferentes
programas e aos valores dos dados climáticos utilizados.
A ferramenta desenvolvida apresenta como vantagem, em relação às demais, o facto de
utilizar dados climáticos médios (hora a hora) por estimativa para cada dia de cada mês do
ano, permitindo obter um balanço energético detalhado em função dos consumos,
apresentando nos casos de estudo abordados, taxas de autoconsumo de energia diárias, que
variam entre 84,18% e 99,40%. Apresenta como desvantagem o facto de não configurar o
sistema ideal (módulos fotovoltaicos/inversor) de forma automática.
Este trabalho permitiu identificar que existem oportunidades de melhoria no modelo de
cálculo de projetos de produção fotovoltaica em autoconsumo para instalações com sistemas
de refrigeração. Pode-se concluir que a ferramenta de dimensionamento desenvolvida é
muito válida, no dimensionamento de sistemas fotovoltaicos em autoconsumo, perante os
resultados obtidos, para que a empresa a possa aplicar de forma fidedigna de modo a servir
os seus clientes, que pretendam instalar sistemas fotovoltaicos nas suas instalações com
sistemas de refrigeração.
In Portugal, industry is, as a rule, responsible for about a third of the country’s energy consumption. In activity sectors such as commerce or the food processing industries, and, given the importance and crucial role of industrial refrigeration, cooling equipment can reach up to 85% of the installation’s total energy consumption. Thus, due to the growing need to boost energy saving and enhance the energy sustainability of these installations, it becomes important to identify opportunities, to know and accurately analyze installations in order to find solutions that can converge towards a more sustainable and ecological path, whether by the use of more efficient technology or by producing energy itself as a sustainable measure, a great challenge of our time and of time to come. This internship report focuses on photovoltaic sizing optimization, bearing in mind the existing legislation, in line with the recent legislative amendments concerning selfconsumption through photovoltaic production systems. To carry out this report, it was essential to acquire essentials knowledge about the components used by photovoltaic systems and about the technical operational conditions and regulations that govern these systems. At an early stage, a design tool was developed in Excel with the express purpose of sizing photovoltaic systems. This tool allowed selecting equipment and making a thorough economical assessment of the viability of self-consumption production in cooling systems installations, regardless of the activity sector. After creating the sizing tool, the comparative method was employed to validate it, by comparing the results of three practical cases with the figures obtained by three other existing calculation tools, in order to support the implemented solution and the potentialities of the tool that was created. Through this method, the relative deviation between the developed tool and the other calculation tools, regarding the photovoltaic energy delivered to the AC power, varied between -1,64% and - 10,12%, values that follow the maximum deviations of ±10% recommended by the sector’s literature. However, it was assessed that these deviations are mostly associated with preassumptions in the various tools and with the values of the climatic data that was employed. The developed tool has the advantage, when compared to the other tools, of using climate normals data (hourly) that estimate each day of each month of the year, arriving at a detailed energy balance in relation to energy consumption presenting, in the addressed case studies, rates of daily self-consumption that vary between 84,18% and 99,40%. Despite this, it has the downside of being unable to automatically configure the optimal system (photovoltaic modules/inverters). This report made it possible to detect that there is room for improvement when it comes to the calculation models of self-consumption photovoltaic manufacturing projects for cooling systems installation. It can be established that, in light of the results achieved, the sizing tool that was developed is highly valid and reliable in sizing the self-consumption photovoltaic systems, enabling the company to apply it to serve any client who wishes to install photovoltaic systems in their cooling systems installations.
In Portugal, industry is, as a rule, responsible for about a third of the country’s energy consumption. In activity sectors such as commerce or the food processing industries, and, given the importance and crucial role of industrial refrigeration, cooling equipment can reach up to 85% of the installation’s total energy consumption. Thus, due to the growing need to boost energy saving and enhance the energy sustainability of these installations, it becomes important to identify opportunities, to know and accurately analyze installations in order to find solutions that can converge towards a more sustainable and ecological path, whether by the use of more efficient technology or by producing energy itself as a sustainable measure, a great challenge of our time and of time to come. This internship report focuses on photovoltaic sizing optimization, bearing in mind the existing legislation, in line with the recent legislative amendments concerning selfconsumption through photovoltaic production systems. To carry out this report, it was essential to acquire essentials knowledge about the components used by photovoltaic systems and about the technical operational conditions and regulations that govern these systems. At an early stage, a design tool was developed in Excel with the express purpose of sizing photovoltaic systems. This tool allowed selecting equipment and making a thorough economical assessment of the viability of self-consumption production in cooling systems installations, regardless of the activity sector. After creating the sizing tool, the comparative method was employed to validate it, by comparing the results of three practical cases with the figures obtained by three other existing calculation tools, in order to support the implemented solution and the potentialities of the tool that was created. Through this method, the relative deviation between the developed tool and the other calculation tools, regarding the photovoltaic energy delivered to the AC power, varied between -1,64% and - 10,12%, values that follow the maximum deviations of ±10% recommended by the sector’s literature. However, it was assessed that these deviations are mostly associated with preassumptions in the various tools and with the values of the climatic data that was employed. The developed tool has the advantage, when compared to the other tools, of using climate normals data (hourly) that estimate each day of each month of the year, arriving at a detailed energy balance in relation to energy consumption presenting, in the addressed case studies, rates of daily self-consumption that vary between 84,18% and 99,40%. Despite this, it has the downside of being unable to automatically configure the optimal system (photovoltaic modules/inverters). This report made it possible to detect that there is room for improvement when it comes to the calculation models of self-consumption photovoltaic manufacturing projects for cooling systems installation. It can be established that, in light of the results achieved, the sizing tool that was developed is highly valid and reliable in sizing the self-consumption photovoltaic systems, enabling the company to apply it to serve any client who wishes to install photovoltaic systems in their cooling systems installations.
Description
Keywords
Energia Fotovoltaica Autoconsumo Refrigeração Decreto-Lei n.º 153/2014 Balanço Energético Viabilidade Económica Photovoltaic Energy Self-Consumption Refrigeration Decree 153/2014 Energetic Balance Economic Viability