| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 7.26 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
Nos dias de hoje, como é conhecido muitas partes do nosso planeta são inacessíveis para
qualquer mecanismo de locomoção que utilize rodas. Os obstáculos naturais como rochas,
solo irregular, encostas ou até mesmo montanhas tornam o seu acesso difícil. No entanto
para este tipo de terreno as pernas são perfeitamente adequadas para as superar com mais
ou menos dificuldade e dessa forma é seguro dizer que são mais eficazes que rodas. Os
mecanismos dotados de pernas permitem trepar e até evitar desníveis permanecendo
equilibrados.
Os sistemas artificiais de locomoção são estruturas mecânicas com várias pernas que por
sua vez são constituídas por elos ligados por eixos lineares ou rotacionais. Estes sistemas
imitam sistemas biológicos e tal como eles apresentam vantagens face a veículos
convencionais. Todavia estes tipos de sistemas apresentam fenómenos cinemáticos e
dinâmicos muito complexos o que torna difícil sua análise e seu controlo.
O trabalho proposto “Telecomando de um Robô Hexápode” vai permitir numa primeira
fase explorar e desenvolver os modelos cinemáticos e dinâmicos inerentes aos hexápodes.
Numa segunda fase é feita a elaboração desse modelo cinemático num hexápode
constituído por controlo de um microcontrolador, servos para a locomoção de cada perna, e
um telecomando para enviar os comandos da locomoção.
Grande parte deste trabalho vai ser o dimensionamento dessa locomoção assim como o seu
controlo e a programação das unidades de microprocessadores e a comunicação do
hexápode com o telecomando.
Today it is known that many parts of our planet is inaccessible to any locomotion mechanism using wheels. The natural obstacles such as rocks, uneven ground, slopes or even mountains makes its difficult access. However for this type of ground legs are perfectly suitable for overcoming with more or less difficulty and they are more effective than wheels. The mechanisms with legs allow climbing and to avoid gaps while remaining balanced. Artificial locomotion systems are mechanical structures with several legs which in turn are made up of links connected by linear or rotational axes. These systems mimic biological systems and they have advantages over conventional vehicles. However these types of systems have very complex kinematic and dynamic phenomena which makes it difficult to analyze and control. The proposed work "Remote Control of a Hexapod Robot" will allow in a first phase of work to explore and develop the kinematic and dynamic models inherent to hexapods. In a second phase is made the elaboration of this kinematic model in a hexapod consisting of a icrocontroller, servos for the locomotion of each leg, and a remote control to send the locomotion commands. Much of this work will be the design of such locomotion as well as the control and programming of microprocessor units and communication of hexapod with the remote control.
Today it is known that many parts of our planet is inaccessible to any locomotion mechanism using wheels. The natural obstacles such as rocks, uneven ground, slopes or even mountains makes its difficult access. However for this type of ground legs are perfectly suitable for overcoming with more or less difficulty and they are more effective than wheels. The mechanisms with legs allow climbing and to avoid gaps while remaining balanced. Artificial locomotion systems are mechanical structures with several legs which in turn are made up of links connected by linear or rotational axes. These systems mimic biological systems and they have advantages over conventional vehicles. However these types of systems have very complex kinematic and dynamic phenomena which makes it difficult to analyze and control. The proposed work "Remote Control of a Hexapod Robot" will allow in a first phase of work to explore and develop the kinematic and dynamic models inherent to hexapods. In a second phase is made the elaboration of this kinematic model in a hexapod consisting of a icrocontroller, servos for the locomotion of each leg, and a remote control to send the locomotion commands. Much of this work will be the design of such locomotion as well as the control and programming of microprocessor units and communication of hexapod with the remote control.
Description
Keywords
Robótica Locomoção Cinemática Hexápode Telecomando Microprocessador Robotics Locomotion Kinematics Hexapod Remote Control Microprocessor
