Name: | Description: | Size: | Format: | |
---|---|---|---|---|
803.29 KB | Adobe PDF |
Advisor(s)
Abstract(s)
Over the last two decades the research and development of legged locomotion robots has grown steadily. Legged
systems present major advantages when compared with ‘traditional’ vehicles, because they allow locomotion in inaccessible
terrain to vehicles with wheels and tracks. However, the robustness of legged robots, and especially their energy
consumption, among other aspects, still lag behind mechanisms that use wheels and tracks. Therefore, in the present
state of development, there are several aspects that need to be improved and optimized. Keeping these ideas in mind,
this paper presents the review of the literature of different methods adopted for the optimization of the structure
and locomotion gaits of walking robots. Among the distinct possible strategies often used for these tasks are referred
approaches such as the mimicking of biological animals, the use of evolutionary schemes to find the optimal parameters
and structures, the adoption of sound mechanical design rules, and the optimization of power-based indexes.
Description
Keywords
Artificial legged locomotion Genetic algorithms Locomotion gaits Optimization Walking robots