Repository logo
 
Publication

Short Time Electricity Consumption Forecast in an Industry Facility

dc.contributor.authorRamos, Daniel
dc.contributor.authorFaria, Pedro
dc.contributor.authorVale, Zita
dc.contributor.authorCorreia, Regina
dc.date.accessioned2023-02-02T12:00:12Z
dc.date.available2023-02-02T12:00:12Z
dc.date.issued2022
dc.description.abstractThe work in this article uses artificial neural networks and support vector machine to forecast electricity consumption in an industrial facility. The main objective is to show that such a problem should be treated with a contextual approach that identifies the most adequate technic in each moment for a single building, contrary to the previous works in the literature that compare the accuracy of each method for the complete data set representing aggregated loads. 72 different algorithms have been implemented and tested. After that, the three most suitable ones are selected in order to support the automated decisions of the best algorithm according to the context. In this way, the implemented methodology finds the best method for the prediction of each 5 min. It can be later used to update the production planning in the industrial facility. It also discussed the size of historical data and the most suitable learning parameters for each method. The case study includes test data for one week and more than one year of training data.pt_PT
dc.description.sponsorshipThis work has received funding from FEDER Funds through COMPETE program and from National Funds through (FCT) under the project COLORS (PTDC/EEI-EEE/28967/2017). The work has also been done in the scope of projects UIDB/00760/2020, CEECIND/02887/2017, and SFRH/BD/144200/2019, financed by FEDER Funds through COMPETE program and from National Funds through (FCT).pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1109/TIA.2021.3123103pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/22111
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherIEEEpt_PT
dc.relationCOLORS - CONTEXTUAL LOAD FLEXIBILITY REMUNERATION STRATEGIES
dc.relationResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
dc.relationNot Available
dc.relationEffective DR gathering and deployment for intensive renewable integration using aggregation and machine learning
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/9591379pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectDemand Responsept_PT
dc.subjectLoad Shiftingpt_PT
dc.subjectRemunerationpt_PT
dc.subjectRebound Effectpt_PT
dc.subjectTrustworthinesspt_PT
dc.titleShort Time Electricity Consumption Forecast in an Industry Facilitypt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleCOLORS - CONTEXTUAL LOAD FLEXIBILITY REMUNERATION STRATEGIES
oaire.awardTitleResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
oaire.awardTitleNot Available
oaire.awardTitleEffective DR gathering and deployment for intensive renewable integration using aggregation and machine learning
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/9471 - RIDTI/PTDC%2FEEI-EEE%2F28967%2F2017/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00760%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/CEEC IND 2017/CEECIND%2F02887%2F2017%2FCP1417%2FCT0003/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT//SFRH%2FBD%2F144200%2F2019/PT
oaire.citation.endPage130pt_PT
oaire.citation.issue1pt_PT
oaire.citation.startPage123pt_PT
oaire.citation.titleIEEE Transactions on Industry Applicationspt_PT
oaire.citation.volume58pt_PT
oaire.fundingStream9471 - RIDTI
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStreamCEEC IND 2017
person.familyNameFaria
person.familyNameVale
person.givenNamePedro
person.givenNameZita
person.identifier632184
person.identifier.ciencia-idB212-2309-F9C3
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0002-5982-8342
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id7004115775
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication35e6a4ab-f644-4bc5-b6fc-9fd89c23d6c6
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscoveryff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isProjectOfPublicationb3dd8bd2-b256-4686-a5d8-31fc725f0204
relation.isProjectOfPublicationdb3e2edb-b8af-487a-b76a-f6790ac2d86e
relation.isProjectOfPublicatione9f5cdee-c0fb-4e2d-81bf-9316a3752526
relation.isProjectOfPublication251e8359-504b-430d-b43d-84097b01ccfe
relation.isProjectOfPublication.latestForDiscoverydb3e2edb-b8af-487a-b76a-f6790ac2d86e

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ART33_GECAD_ZAV_2022.pdf
Size:
937.83 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: