Repository logo
 
Publication

Case-based reasoning using expert systems to determine electricity reduction in residential buildings

dc.contributor.authorFaia, Ricardo
dc.contributor.authorPinto, Tiago
dc.contributor.authorVale, Zita
dc.contributor.authorCorchado, Juan Manuel
dc.date.accessioned2023-03-14T09:20:10Z
dc.date.available2023-03-14T09:20:10Z
dc.date.issued2018
dc.description.abstractCase-based reasoning enables solving new problems using past experience, by reusing solutions for past problems. The simplicity of this technique has made it very popular in several domains. However, the use of this type of approach to support decisions in the power and energy domain is still rather unexplored, especially regarding the flexibility of consumption in buildings in response to recent environmental concerns and consequent governmental policies that envisage the increase of energy efficiency. In order to determine the amount of consumption reduction that should be applied in a building, this article proposes a methodology that adapts the past results of similar cases in order to achieve a decision for the new case. A clustering methodology is used to identify the most similar previous cases, and an expert system is developed to refine the final solution after the combination of the similar cases results. The proposed CBR methodology is evaluated using a set of real data from a residential building. Results prove the advantages of the proposed methodology, demonstrating its applicability to enhance house energy management systems by determining the amount of reduction that should be applied in each moment, thus allowing such systems to carry out the reduction through the different loads of the building.pt_PT
dc.description.sponsorshipThis work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641794 (project DREAM-GO) and a grant agreement No 703689 (project ADAPT); and from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2013pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1109/PESGM.2018.8585963pt_PT
dc.identifier.isbn978-1-5386-7703-2
dc.identifier.issn1944-9933
dc.identifier.urihttp://hdl.handle.net/10400.22/22462
dc.language.isoengpt_PT
dc.publisherIEEEpt_PT
dc.relationEnabling Demand Response for short and real-time Efficient And Market Based smart Grid Operation - An intelligent and real-time simulation approach
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/8585963pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectCase based reasoningpt_PT
dc.subjectClusteringpt_PT
dc.subjectDemand responsept_PT
dc.subjectEnergy efficiencypt_PT
dc.subjectExpert systemspt_PT
dc.subjectResidential energy managementpt_PT
dc.titleCase-based reasoning using expert systems to determine electricity reduction in residential buildingspt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleEnabling Demand Response for short and real-time Efficient And Market Based smart Grid Operation - An intelligent and real-time simulation approach
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FEEA%2F00760%2F2013/PT
oaire.awardURIinfo:eu-repo/grantAgreement/EC/H2020/641794/EU
oaire.citation.conferencePlacePortland, ORpt_PT
oaire.citation.endPage5pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.title2018 IEEE Power & Energy Society General Meeting (PESGM)pt_PT
oaire.fundingStream5876
oaire.fundingStreamH2020
person.familyNameFaia
person.familyNamePinto
person.familyNameVale
person.givenNameRicardo Francisco Marcos
person.givenNameTiago
person.givenNameZita
person.identifier78FtZwIAAAAJ
person.identifierR-000-T7J
person.identifier632184
person.identifier.ciencia-id9B12-19F6-D6C7
person.identifier.ciencia-id2414-9B03-C4BB
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0002-1053-7720
person.identifier.orcid0000-0001-8248-080X
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridT-2245-2018
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id35219107600
person.identifier.scopus-author-id7004115775
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100008530
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameEuropean Commission
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication5866fe1d-e5f9-42fb-a7c8-e35a23d6a6ce
relation.isAuthorOfPublication8d58ddc0-1023-47c0-a005-129d412ce98d
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscovery8d58ddc0-1023-47c0-a005-129d412ce98d
relation.isProjectOfPublication237af9d5-70ed-4e45-9f10-3853d860255e
relation.isProjectOfPublication4a092e97-cc2f-4f57-8d3c-cf1709963516
relation.isProjectOfPublication.latestForDiscovery237af9d5-70ed-4e45-9f10-3853d860255e

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
COM_GECAD_PESGM2018_Faia_AUTHOR VERSION_2018.pdf
Size:
437.57 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: