Repository logo
 
Publication

Fast anomaly detection with locality-sensitive hashing and hyperparameter autotuning

dc.contributor.authorMeira, Jorge
dc.contributor.authorEiras-Franco, Carlos
dc.contributor.authorBolón-Canedo, Verónica
dc.contributor.authorMarreiros, Goreti
dc.contributor.authorAlonso-Betanzos, Amparo
dc.date.accessioned2023-01-31T15:46:52Z
dc.date.available2023-01-31T15:46:52Z
dc.date.issued2022
dc.description.abstractThis paper presents LSHAD, an anomaly detection (AD) method based on Locality Sensitive Hashing (LSH), capable of dealing with large-scale datasets. The resulting algorithm is highly parallelizable and its implementation in Apache Spark further increases its ability to handle very large datasets. Moreover, the algorithm incorporates an automatic hyperparameter tuning mechanism so that users do not have to implement costly manual tuning. Our LSHAD method is novel as both hyperparameter automation and distributed properties are not usual in AD techniques. Our results for experiments with LSHAD across a variety of datasets point to state-of-the-art AD performance while handling much larger datasets than state-of-the-art alternatives. In addition, evaluation results for the tradeoff between AD performance and scalability show that our method offers significant advantages over competing methods.pt_PT
dc.description.sponsorshipThis research has been financially supported in part by the Spanish Ministerio de Economía y Competitividad (project PID-2019-109238GB-C22) and by the Xunta de Galicia (grants ED431C 2018/34 and ED431G 2019/01) through European Union ERDF funds. CITIC, as a research center accredited by the Galician University System, is funded by the Consellería de Cultura, Educación e Universidades of the Xunta de Galicia, supported 80% through ERDF Funds (ERDF Operational Programme Galicia 2014–2020) and 20% by the Secretaría Xeral de Universidades (Grant ED431G 2019/01).This work was also supported by National Funds through the Portuguese FCT - Fundação para a Ciência e a Tecnologia (projects UIDB/00760/2020 and UIDP/00760/2020).pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1016/j.ins.2022.06.035pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/22041
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relationResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
dc.relationResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0020025522006259?via%3Dihubpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectAnomaly detectionpt_PT
dc.subjectUnsupervised learningpt_PT
dc.subjectAutoMLpt_PT
dc.subjectScalabilitypt_PT
dc.subjectBig datapt_PT
dc.titleFast anomaly detection with locality-sensitive hashing and hyperparameter autotuningpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
oaire.awardTitleResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00760%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F00760%2F2020/PT
oaire.citation.endPage1264pt_PT
oaire.citation.startPage1245pt_PT
oaire.citation.titleInformation Sciencespt_PT
oaire.citation.volume607pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
person.familyNameMeira
person.familyNameMarreiros
person.givenNameJorge
person.givenNameGoreti
person.identifier.ciencia-id5013-AE4F-F111
person.identifier.ciencia-idA412-138E-2389
person.identifier.orcid0000-0002-1502-780X
person.identifier.orcid0000-0003-4417-8401
person.identifier.ridM-4583-2013
person.identifier.scopus-author-id9332465700
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication1e842d5b-b0fe-4c09-bc2a-f44540b539d2
relation.isAuthorOfPublicationf084569f-09f5-4d00-b759-aa4a5802f051
relation.isAuthorOfPublication.latestForDiscovery1e842d5b-b0fe-4c09-bc2a-f44540b539d2
relation.isProjectOfPublicationdb3e2edb-b8af-487a-b76a-f6790ac2d86e
relation.isProjectOfPublication6eb94c83-adf9-4d9d-a75c-be95f44e3ca5
relation.isProjectOfPublication.latestForDiscoverydb3e2edb-b8af-487a-b76a-f6790ac2d86e

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART2_GECAD_MGT_2022.pdf
Size:
1.63 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: