Repository logo
 
Publication

A new insight into complexity from the local fractional calculus view point: modelling growths of populations

dc.contributor.authorYang, Xiao-Jun
dc.contributor.authorMachado, J. A. Tenreiro
dc.date.accessioned2016-12-14T10:53:16Z
dc.date.embargo2115-11-01
dc.date.issued2015-11-04
dc.description.abstractIn this paper, we model the growths of populations by means of local fractional calculus. We formulate the local fractionalrate equation and the local fractional logistic equation. The exact solutions of local fractional rate equation andlocal fractional logistic equation with the Mittag-Leffler function defined on Cantor sets are presented. The obtainedresults illustrate the accuracy and efficiency for modeling the complexity of linear and nonlinear population dynamics (PD).pt_PT
dc.identifier.doi10.1002/mma.3765pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/8790
dc.language.isoengpt_PT
dc.publisherWiley Online Librarypt_PT
dc.relation.publisherversionhttp://onlinelibrary.wiley.com/doi/10.1002/mma.3765/fullpt_PT
dc.subjectExact solutionpt_PT
dc.subjectLogistic equationpt_PT
dc.subjectPopulation dynamicspt_PT
dc.subjectLocal fractional derivativept_PT
dc.titleA new insight into complexity from the local fractional calculus view point: modelling growths of populationspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.titleMathematical Methods in the Applied Sciencespt_PT
person.familyNameTenreiro Machado
person.givenNameJ. A.
person.identifier.ciencia-id7A18-4935-5B29
person.identifier.orcid0000-0003-4274-4879
person.identifier.ridM-2173-2013
person.identifier.scopus-author-id55989030100
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication82cd5c17-07b6-492b-b3e3-ecebdad1254f
relation.isAuthorOfPublication.latestForDiscovery82cd5c17-07b6-492b-b3e3-ecebdad1254f

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART_MachadoTenreiro259_2015.pdf
Size:
206.39 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: