Logo do repositório
 
A carregar...
Miniatura
Publicação

A Data-mining-based Methodology to support MV Electricity Customers' Characterization

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
ART_SRamos_2015_GECAD.pdf2.99 MBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

This paper presents an electricity medium voltage (MV) customer characterization framework supportedby knowledge discovery in database (KDD). The main idea is to identify typical load profiles (TLP) of MVconsumers and to develop a rule set for the automatic classification of new consumers. To achieve ourgoal a methodology is proposed consisting of several steps: data pre-processing; application of severalclustering algorithms to segment the daily load profiles; selection of the best partition, corresponding tothe best consumers’ segmentation, based on the assessments of several clustering validity indices; andfinally, a classification model is built based on the resulting clusters. To validate the proposed framework,a case study which includes a real database of MV consumers is performed.

Descrição

Palavras-chave

Load profiling Data Mining Clustering Classification Clustering Validity

Contexto Educativo

Citação

Projetos de investigação

Unidades organizacionais

Fascículo

Editora

Elsevier

Licença CC

Métricas Alternativas