Repository logo
 
Publication

Lambert W functions in the analysis of nonlinear dynamics and bifurcations of a 2D γ-Ricker Population Model

dc.contributor.authorRocha, J. Leonel
dc.contributor.authorTaha, Abdel-Kaddous
dc.contributor.authorAbreu, Stella
dc.date.accessioned2024-07-15T14:26:27Z
dc.date.available2024-07-15T14:26:27Z
dc.date.issued2024
dc.description.abstractThe aim of this paper is to study the use of Lambert W functions in the analysis of nonlinear dynamics and bifurcations of a new two-dimensional 𝛾-Ricker population model. Through the use of such transcendental functions, it is possible to study the fixed points and the respective eigenvalues of this exponential diffeomorphism as analytical expressions. Consequently, the maximum number of fixed points is proved, depending on whether the Allee effect parameter 𝛾 is even or odd. In addition, the analysis of the bifurcation structure of this 𝛾-Ricker diffeomorphism, also taking into account the parity of the Allee effect parameter, demonstrates the results established using the Lambert W functions. Numerical studies are included to illustrate the theoretical results.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationRocha JL, Taha A-K, Abreu S. Lambert W Functions in the Analysis of Nonlinear Dynamics and Bifurcations of a 2D γ-Ricker Population Model. Mathematics. 2024; 12(12):1805. https://doi.org/10.3390/math12121805pt_PT
dc.identifier.doi10.3390/math12121805pt_PT
dc.identifier.issn2227-7390
dc.identifier.urihttp://hdl.handle.net/10400.22/25791
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPIpt_PT
dc.relationCentre of Statistics and its Applications
dc.relation.publisherversionhttps://www.mdpi.com/2227-7390/12/12/1805pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectγ-Ricker population modelpt_PT
dc.subjectLambert W functionpt_PT
dc.subjectAllee effectpt_PT
dc.subjectfixed pointpt_PT
dc.subjectfold and flip bifurcationspt_PT
dc.titleLambert W functions in the analysis of nonlinear dynamics and bifurcations of a 2D γ-Ricker Population Modelpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleCentre of Statistics and its Applications
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00006%2F2020/PT
oaire.citation.conferencePlaceBasel, Switzerlandpt_PT
oaire.citation.issue12pt_PT
oaire.citation.titleMathematicspt_PT
oaire.citation.volume12pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameRocha
person.familyNameCosta de Abreu
person.givenNameJ. Leonel
person.givenNameStella Maria
person.identifier1869126
person.identifier.ciencia-id6A13-4D5A-BABA
person.identifier.ciencia-id011F-4010-9B3B
person.identifier.orcid0000-0001-8053-6822
person.identifier.orcid0000-0002-6358-8214
person.identifier.scopus-author-id24829973500
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication05ad56f7-d535-4669-bcdf-a8d757f6364b
relation.isAuthorOfPublication592b04e4-4dc9-4f55-a575-215c6931cdf9
relation.isAuthorOfPublication.latestForDiscovery05ad56f7-d535-4669-bcdf-a8d757f6364b
relation.isProjectOfPublicatione10d35da-ee2f-4b1b-93d1-c5b163b4a0bb
relation.isProjectOfPublication.latestForDiscoverye10d35da-ee2f-4b1b-93d1-c5b163b4a0bb

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mathematics-12-01805-v2 (3).pdf
Size:
1.05 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: