Repository logo
 
Publication

Evaluating the Effectiveness of Bayesian and Neural Networks for Adaptive Schedulling Systems

dc.contributor.authorCunha, Bruno
dc.contributor.authorMadureira, Ana Maria
dc.contributor.authorPereira, João Paulo
dc.contributor.authorPereira, Ivo
dc.date.accessioned2017-07-07T14:15:45Z
dc.date.embargo2117
dc.date.issued2016
dc.description.abstractThe ability to adjust itself to users’ profile is imperative in modern system, given that many people interact with a lot of information in different ways. The creation of adaptive systems is a complex domain that requires very specific methods and the integration of several intelligent techniques, from an intelligent systems development perspective. Designing an adaptive system requires planning and training of user modelling techniques combined with existing system components. Based on the architecture for user modelling on Intelligent and Adaptive Scheduling Systems, this paper presents an analysis of using the mentioned architecture to characterize user’s behaviours and a case study comparing the employment of different user classifiers. Bayesian and Artificial Neural Networks were selected as the elements of the computational study and this paper presents a description on how to prepare them to deal with user information.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1109/SSCI.2016.7849997pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/10003
dc.language.isoengpt_PT
dc.publisherInstitute of Electrical and Electronics Engineerspt_PT
dc.relation.ispartofseriesSSCI;2016
dc.relation.publisherversionhttp://ieeexplore.ieee.org/document/7849997/pt_PT
dc.subjectUser Modellingpt_PT
dc.subjectHuman-Computer Interactionpt_PT
dc.subjectMachine Learningpt_PT
dc.subjectScalable Intelligencept_PT
dc.subjectScheduling Systemspt_PT
dc.titleEvaluating the Effectiveness of Bayesian and Neural Networks for Adaptive Schedulling Systemspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.titlePROCEEDINGS OF 2016 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCEpt_PT
person.familyNameMadureira
person.familyNamePereira
person.givenNameAna Maria
person.givenNameIvo
person.identifier.ciencia-id7F1D-5AF2-A101
person.identifier.ciencia-id3E18-2D4C-0E14
person.identifier.orcid0000-0002-0264-4710
person.identifier.orcid0000-0001-5440-3225
person.identifier.ridAAH-1056-2021
person.identifier.ridN-1713-2016
person.identifier.scopus-author-id8634629500
person.identifier.scopus-author-id36675461900
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationcd5e5eb7-cf63-48c6-b6b9-a9db2fedebab
relation.isAuthorOfPublication097b47eb-e9f1-40cb-9fe3-ca46efc578cb
relation.isAuthorOfPublication.latestForDiscoverycd5e5eb7-cf63-48c6-b6b9-a9db2fedebab

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ART_AnaMadureira_GECAD_2016.pdf
Size:
902.26 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: