| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 5.2 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
Numa sociedade habituada ao facto de permanecer em constante evolução, novos
comportamentos, hábitos e práticas podem tornar-se nocivas para o planeta Terra, assim como
para todos os que o habitam.
De modo a corresponder a estas carências criadas por diversas ações externas, são várias
as empresas que se esforçam atualmente com vista a criar tecnologias e produtos capazes de
corresponder da melhor forma a estas novas necessidades.
O couro natural, para além ser obtido através de pele animal, utiliza na sua produção
químicos tóxicos, quantidades elevadas de água e energia. O couro artificial, por sua vez, é
obtido a partir de polímeros e, apesar de não utilizar pele animal e não ter um processo de
produção tão poluente para o planeta, utiliza recursos fósseis e, portanto, recursos finitos. Com
vista à sustentabilidade, tanto o couro natural como o couro artificial devem ser substituídos
nas suas matérias-primas ou nos processos através dos quais são obtidos, por processos e
matérias-primas mais sustentáveis e responsáveis para o ambiente.
Neste trabalho irá ser analisada a substituição no couro artificial de diferentes matérias primas, como fibras naturais, recicláveis e biodegradáveis, maioritariamente provenientes de
origem vegetal. Como ponto de partida, iniciou-se este estudo com um couro alternativo
resultante da dissertação desenvolvida no ano transato, que tem como principais constituintes
PVC, resíduos provenientes da indústria da castanha como carga, um plastificante 100%
baseado em Óleo de Soja, e um suporte de algodão biológico. Este produto apresenta 57%
(valor teórico) de constituintes vegetais.
Na Fase I, deste trabalho, adicionou-se uma nova carga – casca de arroz micronizada –
à carga já existente no artigo desenvolvido anteriormente, o que resultou numa percentagem de
componentes vegetais teóricos de 64%. Para a Fase II, substituiu-se parcialmente o PVC por
caroço de azeitona micronizado (35 partes de caroço de azeitona em 65 partes de PVC), tendo se obtido um total de componentes vegetais teóricos de 72%. A última fase, Fase III, teve como
objetivo substituir os retardantes de chama do produto inicial por retardantes de chama mais
sustentáveis. Assim, o produto resultante da Fase III apresenta uma percentagem de
componentes vegetais e/ou sustentáveis de 74%. É de realçar o facto de que este produto
assegura todas as propriedades físico-mecânicas correspondestes aos requisitos mínimos
exigidos para aplicação em estofos.
Paralelamente, foi realizada também uma análise da biodegradação, sendo o Produto
0.1, constituído por um filme convencional e suporte algodão biológico, enquanto todos os restantes produtos eram constituídos pelo filme do produto de partida, apenas diferenciando-se
no tipo de suporte utilizado: Produto 0.2, composto por suporte de algodão biológico; Produto
0.3, sem qualquer tipo de suporte; e o Produto 0.4, constituído por suporte de algodão não
biológico. Após o ensaio de biodegradação e análise das percentagens de perda de massa,
obtiveram-se 19,8% para o Produto 0.1, 18,9% para o Produto 0.2, 12,3% para o Produto 0.3 e
13,7% para o Produto 0.4. Foi possível observar uma competição entre o processo de
biodegradação do filme e a base de algodão biológico, tendo-se verificado que o Produto 0.3,
com suporte de algodão biológico tem um incremento de 5,2% na percentagem de
biodegradação, relativamente ao produto com suporte de algodão não biológico.
As análises termogravimétricas sugerem que o Produto 0.1 após biodegradação se torna
mais resistente à degradação térmica. Os valores obtidos para Tonset pré e pós biodegradação dos
Produtos 0.2 e 0.3 demonstram que ambos os produtos se tornam termicamente mais instáveis
após serem submetidos ao processo de biodegradação.
In a society used to constantly evolving, new behaviors, habits and practices can become harmful to the planet, as well as to everyone who inhabits in it. In order to respond to these needs that are created by various external actions, there’re already a lot of companies and industries that are actually trying to create new technologies and products capable of responding to the new necessities. Natural leather, in addition to the fact that is obtained from animal skin, also uses in their production toxic chemicals and high quantity of water and energy. Artificial leather is obtained from fossil resources, and so, finite resources. When looking through sustainability, both natural and artificial leather should be replaced in their raw materials and processes, by more sustainable and responsible ones. This dissertation will analyze the substitution of different raw materials such as natural, recycled and biodegradable fibers, from plant origin, in artificial leather. As a starting point, this study started with a leather product developed in last year’s dissertation, that has in its composition as main compounds PVC, chestnut waste powder that works as a filler, 100% Soybean Oil based plasticizer, and a biological cotton textile support. This product has 57% of theoretical vegetable components. In the first Phase, a new filler – rice husk powder – was added to the filler that already existed in the starting product – chestnut waste powder - which came out to a percentage of theoretical vegetable compounds of 64%. For the second Phase, PVC was partially substituted by olive stone powder (35 parts of olive stone powder in 65 parts of PVC), which came out to a percentage of 72% of theoretical vegetable compounds. For the last phase, Phase III, the goal was to replace the initial product flame retardants for new sustainable flame retardants. Therefore, the resulting product from this phase had a percentage of vegetable and/or sustainable components of 74%. In the meantime, an analysis of the biodegradation of several products was also carried out, in which Product 0.1, was composed by conventional pastes and biological cotton support and the three others were composed by the same pastes as the initial product but different textile support: Product 0.2 composed by biological cotton textile support; Product 0.3, not composed by any textile support; and Product 0.4, composed by a non-biological cotton textile support After biodegradation analysis, the mass loss percentages obtained were 19,8% for Product 0.1, 18,9% for Product 0.2, 12,3% for Product 0.3 and 13,7% for Product 0.4. It’s also possible to observe a competition between the surface’s and biological cotton’s textile support biodegradation, as well as a preference for the biological cotton textile support, when compared to the non-biological cotton one, with an increase of 5,2% in the percentage of (bio)degradation of the first one. Thermogravimetric analyses, concluded that Product 0.1 becomes more thermally stable after biodegradation (since Tonset increases). For Products 0.2 and 0.3, looking it’s possible to conclude that Product 0.3 (composed only by the pastes), remained thermally unstable after being submitted to biodegradation processes, as their Tonset values.
In a society used to constantly evolving, new behaviors, habits and practices can become harmful to the planet, as well as to everyone who inhabits in it. In order to respond to these needs that are created by various external actions, there’re already a lot of companies and industries that are actually trying to create new technologies and products capable of responding to the new necessities. Natural leather, in addition to the fact that is obtained from animal skin, also uses in their production toxic chemicals and high quantity of water and energy. Artificial leather is obtained from fossil resources, and so, finite resources. When looking through sustainability, both natural and artificial leather should be replaced in their raw materials and processes, by more sustainable and responsible ones. This dissertation will analyze the substitution of different raw materials such as natural, recycled and biodegradable fibers, from plant origin, in artificial leather. As a starting point, this study started with a leather product developed in last year’s dissertation, that has in its composition as main compounds PVC, chestnut waste powder that works as a filler, 100% Soybean Oil based plasticizer, and a biological cotton textile support. This product has 57% of theoretical vegetable components. In the first Phase, a new filler – rice husk powder – was added to the filler that already existed in the starting product – chestnut waste powder - which came out to a percentage of theoretical vegetable compounds of 64%. For the second Phase, PVC was partially substituted by olive stone powder (35 parts of olive stone powder in 65 parts of PVC), which came out to a percentage of 72% of theoretical vegetable compounds. For the last phase, Phase III, the goal was to replace the initial product flame retardants for new sustainable flame retardants. Therefore, the resulting product from this phase had a percentage of vegetable and/or sustainable components of 74%. In the meantime, an analysis of the biodegradation of several products was also carried out, in which Product 0.1, was composed by conventional pastes and biological cotton support and the three others were composed by the same pastes as the initial product but different textile support: Product 0.2 composed by biological cotton textile support; Product 0.3, not composed by any textile support; and Product 0.4, composed by a non-biological cotton textile support After biodegradation analysis, the mass loss percentages obtained were 19,8% for Product 0.1, 18,9% for Product 0.2, 12,3% for Product 0.3 and 13,7% for Product 0.4. It’s also possible to observe a competition between the surface’s and biological cotton’s textile support biodegradation, as well as a preference for the biological cotton textile support, when compared to the non-biological cotton one, with an increase of 5,2% in the percentage of (bio)degradation of the first one. Thermogravimetric analyses, concluded that Product 0.1 becomes more thermally stable after biodegradation (since Tonset increases). For Products 0.2 and 0.3, looking it’s possible to conclude that Product 0.3 (composed only by the pastes), remained thermally unstable after being submitted to biodegradation processes, as their Tonset values.
Description
Keywords
Artificial Leather Vegetable Components Fillers Biodegradation Flame Retardants PVC
