Repository logo
 
Publication

Automatic Segmentation of Monofilament Testing Sites in Plantar Images for Diabetic Foot Management

dc.contributor.authorCosta, Tatiana
dc.contributor.authorCoelho, Luis
dc.contributor.authorSilva, Manuel F.
dc.date.accessioned2023-01-23T09:30:52Z
dc.date.available2023-01-23T09:30:52Z
dc.date.issued2022
dc.description.abstractDiabetic peripheral neuropathy is a major complication of diabetes mellitus, and it is the leading cause of foot ulceration and amputations. The Semmes–Weinstein monofilament examination (SWME) is a widely used, low-cost, evidence-based tool for predicting the prognosis of diabetic foot patients. The examination can be quick, but due to the high prevalence of the disease, many healthcare professionals can be assigned to this task several days per month. In an ongoing project, it is our objective to minimize the intervention of humans in the SWME by using an automated testing system relying on computer vision. In this paper we present the project’s first part, constituting a system for automatically identifying the SWME testing sites from digital images. For this, we have created a database of plantar images and developed a segmentation system, based on image processing and deep learning—both of which are novelties. From the 9 testing sites, the system was able to correctly identify most 8 in more than 80% of the images, and 3 of the testing sites were correctly identified in more than 97.8% of the images.pt_PT
dc.description.sponsorshipPartially supported by FCT-UIDB/04730/2020 and FCT-UIDB/50014/2020 projects.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.3390/bioengineering9030086pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/21748
dc.language.isoengpt_PT
dc.publisherMDPIpt_PT
dc.relationCenter for Innovation in Industrial Engineering and Technology
dc.relationINESC TEC- Institute for Systems and Computer Engineering, Technology and Science
dc.relation.publisherversionhttps://www.mdpi.com/2306-5354/9/3/86pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectSemmes–Weinsteinpt_PT
dc.subjectMonofilamentpt_PT
dc.subjectDiabetic footpt_PT
dc.subjectAutomaticpt_PT
dc.titleAutomatic Segmentation of Monofilament Testing Sites in Plantar Images for Diabetic Foot Managementpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleCenter for Innovation in Industrial Engineering and Technology
oaire.awardTitleINESC TEC- Institute for Systems and Computer Engineering, Technology and Science
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04730%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50014%2F2020/PT
oaire.citation.issue3pt_PT
oaire.citation.startPage86pt_PT
oaire.citation.titleBioengineeringpt_PT
oaire.citation.volume9pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
person.familyNameCoelho
person.familyNameSilva
person.givenNameLuis
person.givenNameManuel
person.identifier721155
person.identifierR-000-A3Q
person.identifier.ciencia-id9B14-241F-3743
person.identifier.ciencia-idAB11-C518-AF50
person.identifier.orcid0000-0002-5673-7306
person.identifier.orcid0000-0002-0593-2865
person.identifier.ridC-9695-2015
person.identifier.ridM-5767-2013
person.identifier.scopus-author-id55027243400
person.identifier.scopus-author-id55934287000
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication5d1adee2-3e4c-4c07-a88e-0887653056dd
relation.isAuthorOfPublication06ad158b-a73e-4c2e-9ea6-5c023ba9b4cc
relation.isAuthorOfPublication.latestForDiscovery06ad158b-a73e-4c2e-9ea6-5c023ba9b4cc
relation.isProjectOfPublicationcdbfce2f-6ff0-4d59-a7c6-96c99d52a570
relation.isProjectOfPublication7a2d9a82-ee07-4c57-bbbf-2d88b942688d
relation.isProjectOfPublication.latestForDiscoverycdbfce2f-6ff0-4d59-a7c6-96c99d52a570

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ART_DFI_LFC_2022.pdf
Size:
6.45 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: