Logo do repositório
 
Publicação

Prediction of football match results with Machine Learning

dc.contributor.authorRodrigues, Fátima
dc.contributor.authorPinto, Ângelo
dc.date.accessioned2022-12-21T12:24:50Z
dc.date.available2022-12-21T12:24:50Z
dc.date.issued2022
dc.description.abstractFootball is one of the most popular sports in the world, so the perception of the game and the prediction of results is of general interest to fans, coaches, media and gamblers. Although predicting football results is a very complex task, the football betting business has grown over time. The unpredictability of football results and the growing betting business justify the development of prediction models to support gamblers. In this article, we develop machine learning methods that take multiple statistics of previous matches and attributes of players from both teams as inputs to predict the outcome of football matches. Several prediction models were tested, with the experimental results showing encouraging performance in terms of the profit margin of football bets.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1016/j.procs.2022.08.057pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/21230
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1877050922007955pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectData miningpt_PT
dc.subjectSports bettingpt_PT
dc.subjectFeature selectionpt_PT
dc.subjectClassificationpt_PT
dc.subjectFootballpt_PT
dc.titlePrediction of football match results with Machine Learningpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage470pt_PT
oaire.citation.startPage463pt_PT
oaire.citation.titleProcedia Computer Sciencept_PT
oaire.citation.volume204pt_PT
person.familyNameRodrigues
person.givenNameMaria de Fátima Coutinho
person.identifier.orcid0000-0003-4950-7593
person.identifier.scopus-author-id7101624989
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationd144c436-b126-4215-aff5-909fc2f87302
relation.isAuthorOfPublication.latestForDiscoveryd144c436-b126-4215-aff5-909fc2f87302

Ficheiros

Principais
A mostrar 1 - 1 de 1
A carregar...
Miniatura
Nome:
ART_DEI_2022.pdf
Tamanho:
888.95 KB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: