Repository logo
 
Publication

Initial Solution Heuristic for Portfolio Optimization of Electricity Markets Participation

dc.contributor.authorFaia, Ricardo
dc.contributor.authorPinto, Tiago
dc.contributor.authorVale, Zita
dc.date.accessioned2021-03-11T10:16:21Z
dc.date.available2021-03-11T10:16:21Z
dc.date.issued2017
dc.description.abstractMeta-heuristic search methods are used to find near optimal global solutions for difficult optimization problems. These meta-heuristic processes usually require some kind of knowledge to overcome the local optimum locations. One way to achieve diversification is to start the search procedure from a solution already obtained through another method. Since this solution is already validated the algorithm will converge easily to a greater global solution. In this work, several well-known meta-heuristics are used to solve the problem of electricity markets participation portfolio optimization. Their search performance is compared to the performance of a proposed hybrid method (ad-hoc heuristic to generate the initial solution, which is combined with the search method). The addressed problem is the portfolio optimization for energy markets participation, where there are different markets where it is possible to negotiate. In this way the result will be the optimal allocation of electricity in the different markets in order to obtain the maximum return quantified through the objective function.pt_PT
dc.description.sponsorshipThis work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641794 (project DREAM-GO) and from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2013.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1007/978-3-319-60285-1_11pt_PT
dc.identifier.isbn978-3-319-60285-1
dc.identifier.urihttp://hdl.handle.net/10400.22/17405
dc.language.isoengpt_PT
dc.publisherSpringerpt_PT
dc.relationEnabling Demand Response for short and real-time Efficient And Market Based smart Grid Operation - An intelligent and real-time simulation approach
dc.relation.publisherversionhttps://link.springer.com/chapter/10.1007%2F978-3-319-60285-1_11pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/pt_PT
dc.subjectElectricity marketspt_PT
dc.subjectHeuristic searchpt_PT
dc.subjectMeta-heuristic optimizationpt_PT
dc.subjectPortfolio optimizationpt_PT
dc.titleInitial Solution Heuristic for Portfolio Optimization of Electricity Markets Participationpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleEnabling Demand Response for short and real-time Efficient And Market Based smart Grid Operation - An intelligent and real-time simulation approach
oaire.awardURIinfo:eu-repo/grantAgreement/EC/H2020/641794/EU
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FEEA%2F00760%2F2013/PT
oaire.citation.conferencePlacePorto, Portugalpt_PT
oaire.citation.endPage142pt_PT
oaire.citation.startPage130pt_PT
oaire.citation.titleInternational Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS 2017)pt_PT
oaire.citation.volume722pt_PT
oaire.fundingStreamH2020
oaire.fundingStream5876
person.familyNameFaia
person.familyNamePinto
person.familyNameVale
person.givenNameRicardo Francisco Marcos
person.givenNameTiago
person.givenNameZita
person.identifier78FtZwIAAAAJ
person.identifierR-000-T7J
person.identifier632184
person.identifier.ciencia-id9B12-19F6-D6C7
person.identifier.ciencia-id2414-9B03-C4BB
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0002-1053-7720
person.identifier.orcid0000-0001-8248-080X
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridT-2245-2018
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id35219107600
person.identifier.scopus-author-id7004115775
project.funder.identifierhttp://doi.org/10.13039/501100008530
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameEuropean Commission
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication5866fe1d-e5f9-42fb-a7c8-e35a23d6a6ce
relation.isAuthorOfPublication8d58ddc0-1023-47c0-a005-129d412ce98d
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscovery8d58ddc0-1023-47c0-a005-129d412ce98d
relation.isProjectOfPublication4a092e97-cc2f-4f57-8d3c-cf1709963516
relation.isProjectOfPublication237af9d5-70ed-4e45-9f10-3853d860255e
relation.isProjectOfPublication.latestForDiscovery237af9d5-70ed-4e45-9f10-3853d860255e

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
COM_GECAD_RFaia_2017.pdf
Size:
1.05 MB
Format:
Adobe Portable Document Format