Repository logo
 
Publication

Data-Mining-based filtering to support Solar Forecasting Methodologies

dc.contributor.authorPinto, Tiago
dc.contributor.authorMarques, Luis
dc.contributor.authorSousa, Tiago M
dc.contributor.authorPraça, Isabel
dc.contributor.authorVale, Zita
dc.contributor.authorAbreu, Samuel L
dc.date.accessioned2021-09-22T11:26:04Z
dc.date.available2021-09-22T11:26:04Z
dc.date.issued2017
dc.description.abstractThis paper proposes an hybrid approach for short term solar intensity forecasting, which combines different forecasting methodologies with a clustering algorithm, which plays the role of data filter, in order to support the selection of the best data for training. A set of methodologies based on Artificial Neural Networks (ANN) and Support Vector Machines (SVM), used for short term solar irradiance forecast, is implemented and compared in order to facilitate the selection of the most appropriate methods and respective parameters according to the available information and needs. Data from the Brazilian city of Florianópolis, in the state of Santa Catarina, has been used to illustrate the methods applicability and conclusions. The dataset comprises the years of 1990 to 1999 and includes four solar irradiance components as well as other meteorological variables, such as temperature, wind speed and humidity. Conclusions about the irradiance components, parameters and the proposed clustering mechanism are presented. The results are studied and analysed considering both efficiency and effectiveness of the results. The experimental findings show that the hybrid model, combining a SVM approach with a clustering mechanism, to filter the data used for training, achieved promising results, outperforming the approaches without clustering.pt_PT
dc.description.sponsorshipThis work has been developed under the European Union’s Horizon 2020 research and innovation programme, Marie Sklodowska-Curie grant agreement No 703689 (project ADAPT); EUREKA - ITEA2 Project FUSE-IT (ITEA-13023) and Project GREEDI (ANI|P2020 17822).pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.14201/ADCAIJ20176385102pt_PT
dc.identifier.issn2255-2863
dc.identifier.urihttp://hdl.handle.net/10400.22/18474
dc.language.isoengpt_PT
dc.publisherUniversity of Salamancapt_PT
dc.relationITEA-13023pt_PT
dc.relationAdaptive Decision support for Agents negotiation in electricity market and smart grid Power Transactions
dc.relation.publisherversionhttps://revistas.usal.es/index.php/2255-2863/article/view/ADCAIJ20176385102pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectArtificial Neural Networkpt_PT
dc.subjectClusteringpt_PT
dc.subjectData Miningpt_PT
dc.subjectMachine Learningpt_PT
dc.subjectSolar Forecastingpt_PT
dc.subjectSupport Vector Machinept_PT
dc.titleData-Mining-based filtering to support Solar Forecasting Methodologiespt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleAdaptive Decision support for Agents negotiation in electricity market and smart grid Power Transactions
oaire.awardURIinfo:eu-repo/grantAgreement/EC/H2020/703689/EU
oaire.citation.endPage102pt_PT
oaire.citation.issue3pt_PT
oaire.citation.startPage85pt_PT
oaire.citation.titleADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journalpt_PT
oaire.citation.volume6pt_PT
oaire.fundingStreamH2020
person.familyNamePinto
person.familyNamePraça
person.familyNameVale
person.givenNameTiago
person.givenNameIsabel
person.givenNameZita
person.identifierR-000-T7J
person.identifier299522
person.identifier632184
person.identifier.ciencia-id2414-9B03-C4BB
person.identifier.ciencia-idC710-4218-1BFF
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0001-8248-080X
person.identifier.orcid0000-0002-2519-9859
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridT-2245-2018
person.identifier.ridK-8430-2014
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id35219107600
person.identifier.scopus-author-id22734900800
person.identifier.scopus-author-id7004115775
project.funder.identifierhttp://doi.org/10.13039/501100008530
project.funder.nameEuropean Commission
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication8d58ddc0-1023-47c0-a005-129d412ce98d
relation.isAuthorOfPublicationee4ecacd-c6c6-41e8-bca1-21a60ff05f50
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscoveryff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isProjectOfPublication0659ce55-4ace-4540-b5e4-06dea6a17510
relation.isProjectOfPublication.latestForDiscovery0659ce55-4ace-4540-b5e4-06dea6a17510

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART_GECAD_ADCAIJ_2017.pdf
Size:
1.27 MB
Format:
Adobe Portable Document Format