Repository logo
 
Publication

A Review of the Main Machine Learning Methods for Predicting Residential Energy Consumption

dc.contributor.authorGonzalez-Briones, Alfonso
dc.contributor.authorHernandez, Guillermo
dc.contributor.authorPinto, Tiago
dc.contributor.authorVale, Zita
dc.contributor.authorCorchado, Juan M.
dc.date.accessioned2022-01-11T14:40:19Z
dc.date.available2022-01-11T14:40:19Z
dc.date.issued2019-11
dc.description.abstractThe ability to predict future energy consumption is very important for energy distribution companies because it allows them to estimate energy needs and supply them accordingly. Consumption prediction makes it possible for those companies to optimize their processes by, for example, providing them with knowledge about future periods of high energy demand or by enabling them to adapt their tariffs to customer consumption. Machine Learning techniques allow to predict future energy consumption on the basis of the customers' historical consumption and several other parameters. This article reviews some of the main machine learning models capable of predicting energy consumption, in our case study we use a specific set of data extracted from a two-year-period of a shoe store. Among the evaluated methods, Gradient Boosting has obtained an 86.3% success rate in predicting consumption.pt_PT
dc.description.sponsorshipThis work was carried out under the frame of the "Towards Sustainable Intelligent Mobility: Blockchain-based framework for IoT Security" Ref. RTI2018-095390-B-C32" project. The project was supported and funded by the Spanish Ministerio de Economıa, Industria y Competitividad. Retos de investigacion, ´Proyectos I+D+i.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1109/EEM.2019.8916406pt_PT
dc.identifier.isbn978-1-72811-257-2
dc.identifier.urihttp://hdl.handle.net/10400.22/19386
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherIEEEpt_PT
dc.relationRTI2018-095390-B-C32pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/pt_PT
dc.subjectEnergy Forecastingpt_PT
dc.subjectMachine Learningpt_PT
dc.subjectGradient Boostingpt_PT
dc.subjectXGBoostpt_PT
dc.subjectLassopt_PT
dc.subjectSGDRegressorpt_PT
dc.subjectMLPpt_PT
dc.subjectRidge regressionpt_PT
dc.titleA Review of the Main Machine Learning Methods for Predicting Residential Energy Consumptionpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.title20th International Conference on Intelligent System Application to Power Systems (ISAP)pt_PT
person.familyNameVale
person.givenNameZita
person.identifier632184
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id7004115775
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscoveryff1df02d-0c0f-4db1-bf7d-78863a99420b

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
COM_GECAD_2019.pdf
Size:
301.88 KB
Format:
Adobe Portable Document Format