| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 5.29 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
O aumento da utilização de recursos energéticos distribuídos nas redes elétricas está a alterar o paradigma de operação do sistema elétrico de energia. Os sistemas descentralizados têm um papel importante na modernização das redes elétricas, devido à possibilidade de se tomarem decisões inteligentes. O uso de novos paradigmas, como programas de demand response e de aparelhos eletrónicos inteligentes são necessários para que os sistemas descentralizados funcionem da maneira mais eficiente possível. O trabalho desta dissertação implementa em laboratório o conceito Power Hardware-InThe-Loop (PHIL), com o intuito de modelar cargas elétricas através da comparação dos valores obtidos na simulação com os valores medidos nos componentes reais. Este conceito, permite controlar as condições da alimentação de energia elétrica do sistema, permitindo melhorar os modelos computacionais. Durante a simulação, o simulador digital de tempo real controla o amplificador de potência e outros equipamentos laboratoriais, com o propósito de fornecer resultados reais para a modelação de diversas cargas, sob diferentes variações de tensão e de frequência. No caso de estudo, o amplificador de potência é usado como fonte de alimentação das cargas elétricas testadas. Os resultados adquiridos foram analisados individualmente para cada carga elétrica do caso de estudo. Com esses mesmos resultados foram criadas relações matemáticas, com o propósito de calcular os erros de cada nível de consumo e os erros do conjunto de todos os níveis consumo, para no fim serem comparados. O mesmo processo foi realizado para os níveis de frequência a que as cargas foram sujeitas.
The expansion in the use of energy resources distributed in electrical networks is changing the operating paradigm of the electrical energy system. Decentralized systems play an important role in modernizing of electrical networks, due to the possibility of making smart decisions. The use of new paradigms, such as demand response programs and smart electronic devices are necessary for decentralized systems to function in the most efficient way possible. The work of this dissertation implements in the laboratory the Power Hardware-In-TheLoop (PHIL) concept, in order to model electrical loads, by comparing the values obtained in the simulation with the values measured in the real components. This concept allows to control the conditions of the electric power supply to each of the components, allowing to improve the computational models. During the simulation, the digital real-time simulator controls the power amplifier and other laboratory equipment, with the purpose of providing real results for the modelling of different loads, under different variations of voltage and frequency. In the case study, the power amplifier is used as a power source for the tested electrical loads. The acquired results were analysed individually for each electrical load of the case study. With these same results, mathematical relations were created, with the purpose of calculating the errors of each consumption level and the errors of the set of all consumption levels, to be compared in the end. The same process was carried out for the frequency levels to which the loads were subjected.
The expansion in the use of energy resources distributed in electrical networks is changing the operating paradigm of the electrical energy system. Decentralized systems play an important role in modernizing of electrical networks, due to the possibility of making smart decisions. The use of new paradigms, such as demand response programs and smart electronic devices are necessary for decentralized systems to function in the most efficient way possible. The work of this dissertation implements in the laboratory the Power Hardware-In-TheLoop (PHIL) concept, in order to model electrical loads, by comparing the values obtained in the simulation with the values measured in the real components. This concept allows to control the conditions of the electric power supply to each of the components, allowing to improve the computational models. During the simulation, the digital real-time simulator controls the power amplifier and other laboratory equipment, with the purpose of providing real results for the modelling of different loads, under different variations of voltage and frequency. In the case study, the power amplifier is used as a power source for the tested electrical loads. The acquired results were analysed individually for each electrical load of the case study. With these same results, mathematical relations were created, with the purpose of calculating the errors of each consumption level and the errors of the set of all consumption levels, to be compared in the end. The same process was carried out for the frequency levels to which the loads were subjected.
Description
Keywords
Simulação em Tempo Real Power-Hardware-In-The-Loop Modelação de Cargas Elétricas Real-Time Simulation Power Hardware-In-The-Loop Electrical Load Modelling
