Repository logo
 
Publication

Text mining applications to facilitate economic and food safety law enforcement

dc.contributor.authorMagalhães, Gustavo
dc.contributor.authorFaria, Brígida Mónica
dc.contributor.authorReis, Luís Paulo
dc.contributor.authorCardoso, Henrique Lopes
dc.date.accessioned2024-05-03T09:14:23Z
dc.date.available2024-05-03T09:14:23Z
dc.date.issued2019
dc.description.abstractEconomic and Food Safety Authority receives on a daily basis reports and complaints regarding infractions, delicts and possible food and economic crimes. These reports and complaints can be in different forms, such as e-mails, online forms, letters, phone calls and complaint books present in every establishment. This paper aims to apply text mining and classification algorithms to textual data extracted from these reports and complains in order to help identify if the responsible entity to analyze the content is, in fact, the Economic and Food Safety Authority. The paper describes text preprocessing and feature extraction procedures applied to Portuguese text data. Supervised multi-class classification methods such as Naïve Bayes and Support Vector Machine Classifiers are employed in the task. We show that a non-semantical text mining approach can achieve good results, scoring around 70% of accuracy.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationMagalhães, G., Faria, B. M., & Cardoso, L. P. R. and H. L. (2019). Text mining applications to facilitate economic and food safety law enforcement (A. P. Abraham & J. Roth, Eds.; pp. 199–203). https://www.iadisportal.org/digital-library/text-mining-applications-to-facilitate-economic-and-food-safety-law-enforcementpt_PT
dc.identifier.isbn978-989-8533-92-0
dc.identifier.urihttp://hdl.handle.net/10400.22/25451
dc.language.isoengpt_PT
dc.publisherIADISpt_PT
dc.relationThe authors would like to thank the IA.SAE – “Inteligência Artificial na Segurança Alimentar e Económica” project, funded by the FCT/MCTES through national funds (PIDDAC), as part of the “Programa Iniciativa Nacional Competências Digitais” e.2030 – INCoDe.2030, enrolled in the National Reform Planpt_PT
dc.relation.publisherversionhttps://www.iadisportal.org/digital-library/text-mining-applications-to-facilitate-economic-and-food-safety-law-enforcementpt_PT
dc.subjectText miningpt_PT
dc.subjectEconomic and food safetypt_PT
dc.subjectNatural language processingpt_PT
dc.subjectText classificationpt_PT
dc.subjectMulti-class classificationpt_PT
dc.titleText mining applications to facilitate economic and food safety law enforcementpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlacePortopt_PT
oaire.citation.endPage203pt_PT
oaire.citation.issueSinglept_PT
oaire.citation.startPage199pt_PT
oaire.citation.titleInternational Conferences Big Data Analytics, Data Mining and Computational Intelligence 2019; and Theory and Practice in Modern Computing 2019pt_PT
oaire.citation.volume1pt_PT
person.familyNameFaria
person.givenNameBrigida Monica
person.identifierR-000-T1F
person.identifier.ciencia-id0D1F-FB5E-55E4
person.identifier.orcid0000-0003-2102-3407
person.identifier.ridC-6649-2012
person.identifier.scopus-author-id6506476517
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication85832a40-7ef9-431a-be0c-78b45ebbae86
relation.isAuthorOfPublication.latestForDiscovery85832a40-7ef9-431a-be0c-78b45ebbae86

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
COM_Brígida Faria.pdf
Size:
986.77 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: