Repository logo
 
Publication

Dynamic electricity pricing for electric vehicles using stochastic programming

dc.contributor.authorSoares, João
dc.contributor.authorGhazvini, Mohammad Ali Fotouhi
dc.contributor.authorBorges, Nuno
dc.contributor.authorVale, Zita
dc.date.accessioned2017-01-25T10:37:40Z
dc.date.available2017-01-25T10:37:40Z
dc.date.issued2017
dc.description.abstractElectric Vehicles (EVs) are an important source of uncertainty, due to their variable demand, departure time and location. In smart grids, the electricity demand can be controlled via Demand Response (DR) programs. Smart charging and vehicle-to-grid seem highly promising methods for EVs control. However, high capital costs remain a barrier to implementation. Meanwhile, incentive and price-based schemes that do not require high level of control can be implemented to influence the EVs’ demand. Having effective tools to deal with the increasing level of uncertainty is increasingly important for players, such as energy aggregators. This paper formulates a stochastic model for day-ahead energy resource scheduling, integrated with the dynamic electricity pricing for EVs, to address the challenges brought by the demand and renewable sources uncertainty. The two-stage stochastic programming approach is used to obtain the optimal electricity pricing for EVs. A realistic case study projected for 2030 is presented based on Zaragoza network. The results demonstrate that it is more effective than the deterministic model and that the optimal pricing is preferable. This study indicates that adequate DR schemes like the proposed one are promising to increase the customers’ satisfaction in addition to improve the profitability of the energy aggregation business.pt_PT
dc.description.versioninfo:eu-repo/semantics/acceptedVersionpt_PT
dc.identifier.doihttp://dx.doi.org/10.1016/j.energy.2016.12.108pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/9387
dc.language.isoengpt_PT
dc.publisherElsevierpt_PT
dc.relation.ispartofseriesEnergy; Vol. 122
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S0360544216319132pt_PT
dc.subjectDemand responsept_PT
dc.subjectElectric vehiclespt_PT
dc.subjectEnergy resource schedulingpt_PT
dc.subjectOptimal pricingpt_PT
dc.subjectSmart gridpt_PT
dc.subjectStochastic programmingpt_PT
dc.titleDynamic electricity pricing for electric vehicles using stochastic programmingpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.startPage111
oaire.citation.titleEnergypt_PT
person.familyNameSoares
person.familyNameVale
person.givenNameJoão
person.givenNameZita
person.identifier1043580
person.identifier632184
person.identifier.ciencia-id1612-8EA8-D0E8
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0002-4172-4502
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id35436109600
person.identifier.scopus-author-id7004115775
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication9ece308b-6d79-4cec-af91-f2278dcc47eb
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscoveryff1df02d-0c0f-4db1-bf7d-78863a99420b

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART_ZitaVale_GECAD_13_2016.pdf
Size:
2.63 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: