Repository logo
 
Publication

Hybrid particle swarm optimization of electricity market participation portfolio

dc.contributor.authorFaia, Ricardo
dc.contributor.authorPinto, Tiago
dc.contributor.authorVale, Zita
dc.contributor.authorCorchado, Juan Manuel
dc.date.accessioned2021-03-09T12:30:40Z
dc.date.available2021-03-09T12:30:40Z
dc.date.issued2017
dc.description.abstractThis paper proposes a novel hybrid particle swarm optimization methodology to solve the problem of optimal participation in multiple electricity markets. The decision time is usually very important when planning the participation in electricity markets. This environment is characterized by the time available to take action, since different electricity markets have specific rules, which requires participants to be able to adapt and plan their decisions in a short time. Using metaheuristic optimization, participants' time problems can be resolved, because these methods enable problems to be solved in a short time and with good results. This paper proposes a hybrid resolution method, which is based on the particle swarm optimization metaheuristic. An exact mathematical method, which solves a simplified, linearized, version of the problem, is used to generate the initial solution for the metaheuristic approach, with the objective of improving the quality of results without representing a significant increase of the execution time.pt_PT
dc.description.sponsorshipThis work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 703689 (project ADAPT) and No 641794 (project DREAM-GO); NetEfficity Project (P2020 − 18015); and UID/EEA/00760/2013 funded by FEDER Funds through COMPETE pro-gram and by National Funds through FCT.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1109/SSCI.2017.8285218pt_PT
dc.identifier.isbn978-1-5386-2726-6
dc.identifier.urihttp://hdl.handle.net/10400.22/17329
dc.language.isoengpt_PT
dc.publisherIEEEpt_PT
dc.relationAdaptive Decision support for Agents negotiation in electricity market and smart grid Power Transactions
dc.relationEnabling Demand Response for short and real-time Efficient And Market Based smart Grid Operation - An intelligent and real-time simulation approach
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/8285218pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectArtificial intelligencept_PT
dc.subjectElectricity marketspt_PT
dc.subjectHybrid resolution methodspt_PT
dc.subjectPortfolio optimizationpt_PT
dc.subjectMetaheuristic optimizationpt_PT
dc.titleHybrid particle swarm optimization of electricity market participation portfoliopt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleAdaptive Decision support for Agents negotiation in electricity market and smart grid Power Transactions
oaire.awardTitleEnabling Demand Response for short and real-time Efficient And Market Based smart Grid Operation - An intelligent and real-time simulation approach
oaire.awardURIinfo:eu-repo/grantAgreement/EC/H2020/703689/EU
oaire.awardURIinfo:eu-repo/grantAgreement/EC/H2020/641794/EU
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FEEA%2F00760%2F2013/PT
oaire.citation.conferencePlaceHonolulu, HI, USApt_PT
oaire.citation.endPage8pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.titleIEEE Symposium Series on Computational Intelligence (SSCI 2017)pt_PT
oaire.fundingStreamH2020
oaire.fundingStreamH2020
oaire.fundingStream5876
person.familyNamePinto
person.familyNameVale
person.givenNameTiago
person.givenNameZita
person.identifierR-000-T7J
person.identifier632184
person.identifier.ciencia-id2414-9B03-C4BB
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0001-8248-080X
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridT-2245-2018
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id35219107600
person.identifier.scopus-author-id7004115775
project.funder.identifierhttp://doi.org/10.13039/501100008530
project.funder.identifierhttp://doi.org/10.13039/501100008530
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameEuropean Commission
project.funder.nameEuropean Commission
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication8d58ddc0-1023-47c0-a005-129d412ce98d
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscovery8d58ddc0-1023-47c0-a005-129d412ce98d
relation.isProjectOfPublication0659ce55-4ace-4540-b5e4-06dea6a17510
relation.isProjectOfPublication4a092e97-cc2f-4f57-8d3c-cf1709963516
relation.isProjectOfPublication237af9d5-70ed-4e45-9f10-3853d860255e
relation.isProjectOfPublication.latestForDiscovery237af9d5-70ed-4e45-9f10-3853d860255e

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
COM_GECAD_CIASG_2017.pdf
Size:
552.49 KB
Format:
Adobe Portable Document Format