Repository logo
 
Publication

Particle swarm optimization algorithm using complex-order derivative concept: A comprehensive study

dc.contributor.authorAbedi Pahnehkolaei, Seyed Mehdi
dc.contributor.authorAlfi, Alireza
dc.contributor.authorMachado, J. A. Tenreiro
dc.date.accessioned2021-10-01T08:48:27Z
dc.date.embargo2031-12
dc.date.issued2021
dc.description.abstractThis paper presents a comprehensive study of the Particle Swarm Optimization (PSO) algorithm, called complex-order PSO (CPSO). In the core of new set of algorithms, we employ the complex-order derivative and the conjugate order differential concepts in the position and velocity adaption mechanisms. To determine the influence of the control parameters on the quality of the results, a sensitivity analysis is conducted. A number of value- and rank-based tests assesses the algorithms’ performance. For a suite of benchmark functions, the standard deviation and the mean best of the results are reported. Additionally, the Friedman test specifies the average ranking from the obtained results. The effect of the complex-order operation and the population size are analyzed using the Taguchi test. An application example illustrates the performance of the CPSO.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1016/j.asoc.2021.107641pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/18635
dc.language.isoengpt_PT
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1568494621005627pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectFractional calculuspt_PT
dc.subjectComplex-orderpt_PT
dc.subjectParticle swarm optimizationpt_PT
dc.subjectSensitivity analysispt_PT
dc.titleParticle swarm optimization algorithm using complex-order derivative concept: A comprehensive studypt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.startPage107641pt_PT
oaire.citation.titleApplied Soft Computingpt_PT
oaire.citation.volume111pt_PT
person.familyNameTenreiro Machado
person.givenNameJ. A.
person.identifier.ciencia-id7A18-4935-5B29
person.identifier.orcid0000-0003-4274-4879
person.identifier.ridM-2173-2013
person.identifier.scopus-author-id55989030100
rcaap.rightsembargoedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication82cd5c17-07b6-492b-b3e3-ecebdad1254f
relation.isAuthorOfPublication.latestForDiscovery82cd5c17-07b6-492b-b3e3-ecebdad1254f

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ART_DEE_JTM_ASC_2021.pdf
Size:
1.83 MB
Format:
Adobe Portable Document Format