Repository logo
 
Publication

Multi-agent Electricity Markets and Smart Grids Simulation with Connection to Real Physical Resources

dc.contributor.authorPinto, Tiago
dc.contributor.authorVale, Zita
dc.contributor.authorPraça, Isabel
dc.contributor.authorGomes, Luis
dc.contributor.authorFaria, Pedro
dc.date.accessioned2021-02-24T14:59:41Z
dc.date.available2021-02-24T14:59:41Z
dc.date.issued2018
dc.description.abstractThe increasing penetration of distributed energy sources, mainly based on renewable generation, calls for an urgent emergence of novel advanced methods to deal with the associated problems. The consensus behind smart grids (SGs) as one of the most promising solutions for the massive integration of renewable energy sources in power systems has led to the development of several prototypes that aim at testing and validating SG methodologies. The urgent need to accommodate such resources require alternative solutions. This chapter presents a multi-agent based SG simulation platform connected to physical resources, so that realistic scenarios can be simulated. The SG simulator is also connected to the Multi-Agent Simulator of Competitive Electricity Markets, which provides a solid framework for the simulation of electricity markets. The cooperation between the two simulation platforms provides huge studying opportunities under different perspectives, resulting in an important contribution to the fields of transactive energy, electricity markets, and SGs. A case study is presented, showing the potentialities for interaction between players of the two ecosystems: a SG operator, which manages the internal resources of a SG, is able to participate in electricity market negotiations to trade the necessary amounts of power to fulfill the needs of SG consumers.pt_PT
dc.description.sponsorshipThis work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement N. 641794 (project DREAM-GO). It has also received FEDER Funds through the COMPETE program and National Funds through FCT under the project UID/EEA/00760/2013. The authors gratefully acknowledge the valuable contribution of Bruno Canizes, Daniel Paiva, Gabriel Santos and Marco Silva to the work presented in the chapter.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1007/978-3-319-74263-2_11pt_PT
dc.identifier.isbn978-3-319-74263-2
dc.identifier.urihttp://hdl.handle.net/10400.22/17121
dc.language.isoengpt_PT
dc.publisherSpringerpt_PT
dc.relationEnabling Demand Response for short and real-time Efficient And Market Based smart Grid Operation - An intelligent and real-time simulation approach
dc.relation.publisherversionhttps://link.springer.com/chapter/10.1007%2F978-3-319-74263-2_11pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectDemand responsept_PT
dc.subjectElectricity marketspt_PT
dc.subjectEnwergy resource managementpt_PT
dc.subjectMulti-agent simulationpt_PT
dc.subjectSmart gridspt_PT
dc.titleMulti-agent Electricity Markets and Smart Grids Simulation with Connection to Real Physical Resourcespt_PT
dc.typebook part
dspace.entity.typePublication
oaire.awardTitleEnabling Demand Response for short and real-time Efficient And Market Based smart Grid Operation - An intelligent and real-time simulation approach
oaire.awardURIinfo:eu-repo/grantAgreement/EC/H2020/641794/EU
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FEEA%2F00760%2F2013/PT
oaire.citation.endPage327pt_PT
oaire.citation.startPage305pt_PT
oaire.citation.titleElectricity Markets with Increasing Levels of Renewable Generation: Structure, Operation, Agent-based Simulation, and Emerging Designs. Studies in Systems, Decision and Controlpt_PT
oaire.citation.volume144pt_PT
oaire.fundingStreamH2020
oaire.fundingStream5876
person.familyNamePinto
person.familyNameVale
person.familyNamePraça
person.familyNameFaria
person.givenNameTiago
person.givenNameZita
person.givenNameIsabel
person.givenNamePedro
person.identifierR-000-T7J
person.identifier632184
person.identifier299522
person.identifier.ciencia-id2414-9B03-C4BB
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.ciencia-idC710-4218-1BFF
person.identifier.ciencia-id6F19-CB63-C8A8
person.identifier.ciencia-idB212-2309-F9C3
person.identifier.orcid0000-0001-8248-080X
person.identifier.orcid0000-0002-4560-9544
person.identifier.orcid0000-0002-2519-9859
person.identifier.orcid0000-0002-8597-3383
person.identifier.orcid0000-0002-5982-8342
person.identifier.ridT-2245-2018
person.identifier.ridA-5824-2012
person.identifier.ridK-8430-2014
person.identifier.scopus-author-id35219107600
person.identifier.scopus-author-id7004115775
person.identifier.scopus-author-id22734900800
project.funder.identifierhttp://doi.org/10.13039/501100008530
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameEuropean Commission
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typebookPartpt_PT
relation.isAuthorOfPublication8d58ddc0-1023-47c0-a005-129d412ce98d
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublicationee4ecacd-c6c6-41e8-bca1-21a60ff05f50
relation.isAuthorOfPublicationeaac2304-a007-4531-8398-ee9f426c2f52
relation.isAuthorOfPublication35e6a4ab-f644-4bc5-b6fc-9fd89c23d6c6
relation.isAuthorOfPublication.latestForDiscovery35e6a4ab-f644-4bc5-b6fc-9fd89c23d6c6
relation.isProjectOfPublication4a092e97-cc2f-4f57-8d3c-cf1709963516
relation.isProjectOfPublication237af9d5-70ed-4e45-9f10-3853d860255e
relation.isProjectOfPublication.latestForDiscovery237af9d5-70ed-4e45-9f10-3853d860255e

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CAPL_GECAD_ACEM__2018.pdf
Size:
1.19 MB
Format:
Adobe Portable Document Format