Repository logo
 
Publication

Self Hyper-Parameter Tuning for Data Streams

dc.contributor.authorVeloso, Bruno
dc.contributor.authorGama, João
dc.contributor.authorMalheiro, Benedita
dc.date.accessioned2018-11-07T11:24:51Z
dc.date.embargo2119
dc.date.issued2018
dc.date.updated2018-10-28T15:28:28Z
dc.description.abstractThe widespread usage of smart devices and sensors together with the ubiquity of the Internet access is behind the exponential growth of data streams. Nowadays, there are hundreds of machine learning algorithms able to process high-speed data streams. However, these algorithms rely on human expertise to perform complex processing tasks like hyper-parameter tuning. This paper addresses the problem of data variability modelling in data streams. Specifically, we propose and evaluate a new parameter tuning algorithm called Self Parameter Tuning (SPT). SPT consists of an online adaptation of the Nelder & Mead optimisation algorithm for hyper-parameter tuning. The method explores a dynamic size sample method to evaluate the current solution, and uses the Nelder & Mead operators to update the current set of parameters. The main contribution is the adaptation of the Nelder-Mead algorithm to automatically tune regression hyper-parameters for data streams. Additionally, whenever concept drifts occur in the data stream, it re-initiates the search for new hyper-parameters. The proposed method has been evaluated on regression scenario. Experiments with well known time-evolving data streams show that the proposed SPT hyper-parameter optimisation outperforms the results of previous expert hyper-parameter tuning efforts.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier978-3-030-01770-5en_US
dc.identifier.doi10.1007/978-3-030-01771-2_16pt_PT
dc.identifier.isbn978-3-030-01770-5
dc.identifier.urihttp://hdl.handle.net/10400.22/12114
dc.language.isoengpt_PT
dc.publisherSpringer International Publishingpt_PT
dc.relationPOCI-01-0145-FEDER-006961pt_PT
dc.relationINESC TEC - INESC Technology and Science
dc.relation.publisherversionhttps://link.springer.com/chapter/10.1007/978-3-030-01771-2_16pt_PT
dc.subjectParameter tuningpt_PT
dc.subjectHyper-parameterspt_PT
dc.subjectOptimisationpt_PT
dc.subjectNelder-Meadpt_PT
dc.subjectRegressionpt_PT
dc.titleSelf Hyper-Parameter Tuning for Data Streamspt_PT
dc.typebook part
dspace.entity.typePublication
oaire.awardTitleINESC TEC - INESC Technology and Science
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FEEA%2F50014%2F2013/PT
oaire.citation.titleDiscovery Sciencept_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameBENEDITA CAMPOS NEVES MALHEIRO
person.givenNameMARIA
person.identifier.ciencia-id7A15-08FC-4430
person.identifier.orcid0000-0001-9083-4292
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsclosedAccesspt_PT
rcaap.typebookPartpt_PT
relation.isAuthorOfPublicationbabd4fda-654a-4b59-952d-6113eebbb308
relation.isAuthorOfPublication.latestForDiscoverybabd4fda-654a-4b59-952d-6113eebbb308
relation.isProjectOfPublication83dccc11-0e61-4cb1-b1a7-adad289c49a3
relation.isProjectOfPublication.latestForDiscovery83dccc11-0e61-4cb1-b1a7-adad289c49a3

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
CAPL_BMalheiro_LSA_2018.pdf
Size:
335.49 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: