Repository logo
 
Publication

Demand response performance and uncertainty: A systematic literature review

dc.contributor.authorSilva, Cátia
dc.contributor.authorFaria, Pedro
dc.contributor.authorVale, Zita
dc.contributor.authorCorchado, J.M.
dc.date.accessioned2023-02-01T12:30:53Z
dc.date.available2023-02-01T12:30:53Z
dc.date.issued2022
dc.description.abstractThe present review has been carried out, resorting to the PRISMA methodology, analyzing 218 published articles. A comprehensive analysis has been conducted regarding the consumer's role in the energy market. Moreover, the methods used to address demand response uncertainty and the strategies used to enhance performance and motivate participation have been reviewed. The authors find that participants will be willing to change their consumption pattern and behavior given that they have a complete awareness of the market environment, seeking the optimal decision. The authors also find that a contextual solution, giving the right signals according to the different behaviors and to the different types of participants in the DR event, can improve the performance of consumers' participation, providing a reliable response. DR is a mean of demand-side management, so both these concepts are addressed in the present paper. Finally, the pathways for future research are discussed.pt_PT
dc.description.sponsorshipThis article is a result of the project RETINA (NORTE-01-0145- FEDER-000062), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). We also acknowledge the work facilities and equipment provided by GECAD research center (UIDB/00760/2020) to the project team, and grants CEECIND/02887/2017 and SFRH/BD/144200/2019.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1016/j.esr.2022.100857pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/22062
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relationNORTE-01-0145- FEDER-000062pt_PT
dc.relationResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
dc.relationEffective DR gathering and deployment for intensive renewable integration using aggregation and machine learning
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S2211467X22000566pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectActive consumerpt_PT
dc.subjectBehaviorpt_PT
dc.subjectDemand responsept_PT
dc.subjectLoad flexibilitypt_PT
dc.subjectPerformancept_PT
dc.subjectUncertaintypt_PT
dc.titleDemand response performance and uncertainty: A systematic literature reviewpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
oaire.awardTitleEffective DR gathering and deployment for intensive renewable integration using aggregation and machine learning
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00760%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT//SFRH%2FBD%2F144200%2F2019/PT
oaire.citation.startPage100857pt_PT
oaire.citation.titleEnergy Strategy Reviewspt_PT
oaire.citation.volume41pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameSilva
person.familyNameFaria
person.familyNameVale
person.givenNameCátia
person.givenNamePedro
person.givenNameZita
person.identifier632184
person.identifier.ciencia-id5318-DCFD-218D
person.identifier.ciencia-idB212-2309-F9C3
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0001-8306-4568
person.identifier.orcid0000-0002-5982-8342
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id7004115775
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication5eebf2bb-32f6-4593-a536-6db611d531e8
relation.isAuthorOfPublication35e6a4ab-f644-4bc5-b6fc-9fd89c23d6c6
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscovery5eebf2bb-32f6-4593-a536-6db611d531e8
relation.isProjectOfPublicationdb3e2edb-b8af-487a-b76a-f6790ac2d86e
relation.isProjectOfPublication251e8359-504b-430d-b43d-84097b01ccfe
relation.isProjectOfPublication.latestForDiscoverydb3e2edb-b8af-487a-b76a-f6790ac2d86e

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART15_GECAD_ZAV_2022.pdf
Size:
3.29 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: