Loading...
Research Project
Untitled
Funder
Authors
Publications
Biomonitoring of firefighting forces: a review on biomarkers of exposure to health-relevant pollutants released from fires
Publication . Barros, Bela; Oliveira, Marta; Morais, Simone
Occupational exposure as a firefighter has recently been classified as a carcinogen to humans by International Agency for Research on Cancer (IARC). Biomonitoring has been increasingly used to characterize exposure of firefighting forces to contaminants. However, available data are dispersed and information on the most relevant and promising biomarkers in this context of firefighting is missing. This review presents a comprehensive summary and critical appraisal of existing biomar-kers of exposure including volatile organic compounds such as polycyclic aromatic hydrocarbons, several other persistent other organic pollutants as well as heavy metals and metalloids detected in biological fluids of firefighters attending different fire scenarios. Urine was the most characterized matrix, followed by blood. Firefighters exhaled breath and saliva were poorly evaluated. Overall, biological levels of compounds were predominantly increased in firefighters after participation in firefighting activities. Biomonitoring studies combining different biomarkers of exposure and of effect are currently limited but exploratory findings are of high interest. However, biomonitoring still has some unresolved major limitations since reference or recommended values are not yet established for most biomarkers. In addition, half-lives values for most of the biomarkers have thus far not been defined, which significantly hampers the design of studies. These limitations need to be tackled urgently to improve risk assessment and support implementation of better more effective preventive strategies.
Human Biomonitoring of Selected Hazardous Compounds in Portugal: Part I—Lessons Learned on Polycyclic Aromatic Hydrocarbons, Metals, Metalloids, and Pesticides
Publication . Pena, Angelina; Duarte, Sofia; Pereira, André M. P. T.; Silva, Liliana J. G.; Laranjeiro, Célia S. M.; Oliveira, Marta; Lino, Celeste; Morais, Simone
Human biomonitoring (HBM) data provide information on total exposure regardless of the route and sources of exposure. HBM studies have been applied to quantify human exposure to contaminants and environmental/occupational pollutants by determining the parent compounds, their metabolites or even their reaction products in biological matrices. HBM studies performed among the Portuguese population are disperse and limited. To overcome this knowledge gap, this review gathers, for the first time, the published Portuguese HBM information concerning polycyclic aromatic hydrocarbons (PAHs), metals, metalloids, and pesticides concentrations detected in the urine, serum, milk, hair, and nails of different groups of the Portuguese population. This integrative insight of available HBM data allows the analysis of the main determinants and patterns of exposure of the Portuguese population to these selected hazardous compounds, as well as assessment of the potential health risks. Identification of the main difficulties and challenges of HBM through analysis of the enrolled studies was also an aim. Ultimately, this study aimed to support national and European policies promoting human health and summarizes the most important outcomes and lessons learned through the HBM studies carried out in Portugal
Human Biomonitoring of Selected Hazardous Compounds in Portugal: Part II—Lessons Learned on Mycotoxins
Publication . Pena, Angelina; Duarte, Sofia; Pereira, André M. P. T.; Silva, Liliana J. G.; Laranjeiro, Célia S. M.; Oliveira, Marta; Lino, Celeste; Morais, Simone
Human biomonitoring (HBM) data provide information on total exposure regardless of the route and sources of exposure. HBM studies have been applied to quantify human exposure to contaminants and environmental/occupational pollutants by means of determining the parent compounds, their metabolites, or even their reaction products in biological matrices. HBM studies performed among the Portuguese population are dispersed and limited. Thus, to overcome this knowledge gap, this work reviews the published Portuguese HBM information concerning mycotoxins detected in the urine, serum, milk, hair, and nails of different groups of the Portuguese population. This integrative approach to the available HBM data allows us to analyze the main determinants and patterns of exposure of the Portuguese population to the selected hazardous compounds, as well as to assess the potential health risks. We also aimed to identify the main difficulties and challenges of HBM through the analysis of the enrolled studies. Ultimately, this study aims to support national and European policies in promoting human health by summarizing the most important outcomes and lessons learned through the HBM studies carried out in Portugal
Unveiling Urinary Mutagenicity by the Ames Test for Occupational Risk Assessment: A Systematic Review
Publication . Barros, Bela; Oliveira, Marta; Morais, Simone
Occupational exposure may involve a variety of toxic compounds. A mutagenicity analysis using the Ames test can provide valuable information regarding the toxicity of absorbed xenobiotics. Through a search of relevant databases, this systematic review gathers and critically discusses the published papers (excluding other types of publications) from 2001–2021 that have assessed urinary mutagenicity (Ames test with Salmonella typhimurium) in an occupational exposure context. Due to the heterogeneity of the study methods, a meta-analysis could not be conducted. The characterized occupations were firefighters, traffic policemen, bus drivers, mail carriers, coke oven and charcoal workers, chemical laboratory staff, farmers, pharmacy workers, and professionals from several other industrial sectors. The genetically modified bacterial strains (histidine dependent) TA98, TA100, YG1041, YG1021, YG1024 and YG1042 have been used for the health risk assessment of individual (e.g., polycyclic aromatic hydrocarbons) and mixtures of compounds (e.g., diesel engine exhaust, fire smoke, industrial fumes/dyes) in different contexts. Although comparison of the data between studies is challenging, urinary mutagenicity can be very informative of possible associations between work-related exposure and the respective mutagenic potential. Careful interpretation of results and their direct use for occupational health risk assessment are crucial and yet complex; the use of several strains is highly recommended since individual and/or synergistic effects of complex exposure to xenobiotics can be overlooked. Future studies should improve the methods used to reach a standardized protocol for specific occupational environments to strengthen the applicability of the urinary mutagenicity assay and reduce inter- and intra-individual variability and exposure source confounders
Exposure to PAHs during Firefighting Activities: A Review on Skin Levels, In Vitro/In Vivo Bioavailability, and Health Risks
Publication . Sousa, Gabriel; Teixeira, Joana; Delerue-Matos, Cristina; Sarmento, Bruno; Morais, Simone; Wang, Xianyu; Rodrigues, Francisca; Oliveira, Marta
Occupational exposure as a firefighter is a complex activity that continuously exposes subjects to several health hazards including fire emissions during firefighting. Firefighters are exposed to polycyclic aromatic hydrocarbons (PAHs), known as toxic, mutagenic, and carcinogenic compounds, by inhalation, dermal contact, and ingestion. In this work, a literature overview of firefighters’ dermal exposure to PAHs after firefighting and data retrieved from skin in vitro/in vivo studies related to their dermal absorption, bioavailability, and associated toxicological and carcinogenic effects are reviewed. The evidence demonstrates the contamination of firefighters’ skin with PAHs, mainly on the neck (2.23–62.50 ng/cm2), wrists (0.37–8.30 ng/cm2), face (2.50–4.82 ng/cm2), and hands (1.59–4.69 ng/cm2). Concentrations of possible/probable carcinogens (0.82–33.69 ng/cm2), including benzopyrene isomers, were found on firefighters’ skin. PAHs penetrate the skin tissues, even at low concentrations, by absorption and/or diffusion, and are locally metabolized and distributed by the blood route to other tissues/organs. Lighter PAHs presented increased dermal permeabilities and absorption rates than heavier compounds. Topical PAHs activate the aryl hydrocarbon receptor and promote the enzymatic generation of reactive intermediates that may cause protein and/or DNA adducts. Future research should include in vitro/in vivo assays to perform a more realistic health risk assessment and to explore the contribution of dermal exposure to PAHs total internal dose
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
3599-PPCDT
Funding Award Number
PCIF/SSO/0017/2018