Loading...
Research Project
Untitled
Funder
Authors
Publications
Meshless analysis of the stress singularity in composite adhesive joints
Publication . Ramalho, L.D.C.; Dionísio, J.M.M.; Sánchez-Arce, I.J.; Campilho, R.D.S.G.; Belinha, Jorge
Adhesives are an exceptionally well-suited method for joining composites. Unlike other methods, such as bolting or riveting, adhesives do not introduce holes in their joining material. This is a significant advantage in the case of composites because the holes required by bolting or riveting induce stress concentrations and can also lead to tears, burrs or delamination. A point of concern in adhesive joints is the adhesive/adherend interface corner where a stress singularity occurs, and failure usually initiates. Thus, it is crucial to study this stress singularity to better understand adhesive joints’ mechanical behaviour.
The goal of this work is to validate the application of the Intensity of Singular Stress Fields (ISSF) criterion to meshless methods, in this case, the Radial Point Interpolation Method (RPIM). With this purpose, eight overlap lengths (LO) in single-lap joints (SLJ) composed of Carbon Fibre Reinforced Polymer (CFRP) and bonded with a brittle adhesive were experimentally and numerically tested. Furthermore, an extrapolation based method is implemented to determine the critical stress singularity components (Hc) necessary for the strength predictions. In the end, the experimental and numerical results are compared to assess the suitability of the method. It was found that the ISSF criterion can be accurately applied to meshless methods and composite materials successfully, given the simplicity of the method applied.
Fracture propagation based on meshless method and energy release rate criterion extended to the Double Cantilever Beam adhesive joint test
Publication . Gonçalves, D.C.; Sánchez-Arce, I.J.; Ramalho, L.D.C.; Campilho, R.D.S.G.; Belinha, Jorge
In this work, a numerical methodology based on a meshless technique is proposed to predict the fracture propagation in Double Cantilever Beam (DCB) adhesive joints. The Radial Point Interpolation Method (RPIM) is used to approximate the field variable at each crack increment step. The meshless method permits a flexible discretization of the problem domain in a set of unstructured field nodes and eases the implementation of the geometric crack propagation algorithm. Regarding the fracture propagation algorithm, a recent adaptative remeshing technique is used combined with the RPIM. The crack tip is explicitly propagated by locally remeshing the field nodes and triangular integration cells in the crack tip vicinity. To predict the crack initiation, a fracture mechanics criterion based on the energy release rate in DCB is implemented. The proposed numerical methodology is validated with experimental data.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
5665-PICT
Funding Award Number
MIT-EXPL/ISF/0084/2017