Loading...
Research Project
PRECISE - Power and Energy Cyber-Physical Solutions with Explainable Semantic Learning
Funder
Authors
Publications
Residential load shifting in demand response events for bill reduction using a genetic algorithm
Publication . Mota, Bruno; Faria, Pedro; Vale, Zita
Flexible demand management for residential load scheduling, which considers constraints, such as load operating time window and order between them, is a key aspect in demand response. This paper aims to address constraints imposed on the operation schedule of appliances while also participating in demand response events. An innovative crossover method of genetic algorithms is proposed, implemented, and validated. The proposed solution considers distributed generation, dynamic pricing, and load shifting to minimize energy costs, reducing the electricity bill. A case study using real household workload data is presented, where four appliances are scheduled for five days, and three different scenarios are explored. The implemented genetic algorithm achieved up to 15% in bill reduction, in different scenarios, when compared to business as usual.
Residential load shifting in demand response events for bill reduction using a genetic algorithm
Publication . Mota, Bruno; Faria, Pedro; Vale, Zita
Flexible demand management for residential load scheduling, which considers constraints, such as load operating time window and order between them, is a key aspect in demand response. This paper aims to address constraints imposed on the operation schedule of appliances while also participating in demand response events. An innovative crossover method of genetic algorithms is proposed, implemented, and validated. The proposed solution considers distributed generation, dynamic pricing, and load shifting to minimize energy costs, reducing the electricity bill. A case study using real household workload data is presented, where four appliances are scheduled for five days, and three different scenarios are explored. The implemented genetic algorithm achieved up to 15% in bill reduction, in different scenarios, when compared to business as usual.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
3599-PPCDT
Funding Award Number
PTDC/EEI-EEE/6277/2020