Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Gasification of Cork Wastes in a Fluidized Bed ReactorPublication . Rodrigues, Sara; Almeida, Ana F.; Ribeiro, A.M.; Neto, Paula; Ramalho, Elisa; Pilão, Rosa MariaBiomass gasification has been identified as an option for energetic valorisation of organic wastes. This work aimed to study the gasification of cork industry wastes using a semi-batch fluidized bed reactor. The experimental tests were performed using air as oxidizing agent and sand particles as bed material. The heating was performed with an electrical resistance of 3 kW. The effect of biomass load (2–5.6 g), and bed temperature (780–900 °C) on gasification performance was evaluated using an air flow rate of 0.092 g/s. Samples of producer gas were analysed by a gas chromatograph fitted with a thermal conductivity detector. The detected and quantified compounds on producer gas were H2, CO, CH4 and CO2. Temperature and mass load had a predominant role in gasification performance and all gasification parameters increased with the temperature rise. The increase of mass resulted in a decrease of carbon conversion efficiency, cold gas efficiency and dry gas yield. Best results were obtained with mass load at a range of of 2–4 g, working at 850 °C. The results showed that cork particles are a sustainable raw material for gasification processes.
- Catalytic co-gasification of glycerol/fat mixtures: experimental vs thermodynamic equilibrium resultsPublication . Cruz, A. C.; Ramalho, Elisa; Pilão, Rosa MariaIn this work, the co-gasification of treated crude glycerol and animal fat was studied using steam as the gasification agent. Tests were performed in a downflow fixed bed reactor with a bed composed of catalyst particles of dolomite. The gasification process was studied using a mixture with 59% of glycerol, 3% of fat, and 38% of water and tests were carried out at 700 °C and 750 °C. The producer gas was quantified and analyzed by gas chromatography obtaining, for the tested temperatures, between 48 and 47% of H2, about 13% of CO, 11% of CH4, and CO2 content between 30 and 27%. The results showed that the use of dolomite as a catalyst promotes the production of a gas rich in H2 and CO2. The results also show that the gasification parameters increase with temperature. Maximum values of 0.92 m3/kg for dry gas yield, 70.6% for cold gas efficiency, and 58% and 40.9% for carbon and hydrogens efficiencies were obtained. The gasification process was evaluated using the non-stoichiometric chemical equilibrium model. The results obtained showed that the real gasification process does not reach chemical equilibrium.
- Gasification of crude glycerol after salt removalPublication . Almeida, Ana; Pilão, Rosa; Ribeiro, A.M.; Ramalho, Elisa; Pinho, CarlosThe increase in the amount of crude glycerol available on the market, as well as the decrease in its purity due to the use of waste materials in the production of biodiesel, has forced producers to look for alternative ways of valuing this byproduct. In this research work, crude glycerol of a Portuguese biodiesel producer was pretreated using an ion exchange process in order to reduce its salt content. The gasification process was performed using steam as the oxidizing agent in a down-flow fixed-bed reactor using alumina particles as bed material. After the gasification process, the producer gas flowed through a condensing and cleaning system, in order to remove the condensable fraction. Dry gas samples were collected and analyzed by GC in order to quantify the CO, CO2, CH4, and H2 content. Three different feed mixtures were studied with 35%, 39%, and 59% (w/w) water, and the tests were performed at 850, 900, and 950 °C. The results showed that the increase of the water content in the feed mixture led to higher values of H2 and CO2, and lower values for CO and CH4, on the producer gas composition. A slight increase of dry gas yield and hydrogen conversion efficiency with the increase of water content in the feed was observed, while the lower heating value of producer gas decreased. No significant influence of water content was detected in the carbon conversion efficiency and cold gas efficiency. The increase of temperature resulted in the increase of four gasification parameters with maximum mean values of 90% for carbon conversion efficiency, 100% for hydrogen conversion efficiency, 107% for cold gas efficiency, and 1.3 m3/kg raw material. The maximum lower heating value of 14.5 MJ/m3 was obtained at 850 °C.